Cryocoolers 11

  • R. G. RossJr.

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Government Cryocooler Development and Test Programs

    1. Thom Davis, B. J. Tomlinson, Jim Ledbetter
      Pages 1-9
    2. B. J. Tomlinson, C. H. Yoneshige, N. S. Abhyankar
      Pages 17-25
    3. S. Blankenship, T. Lynn Fountain, T. M. Davis, B. J. Tomlinson
      Pages 27-33
  3. Space Stirling Cryocooler Developments

    1. Kenneth Price, John Reilly, Nandu Abhyankar, Ben Tomlinson
      Pages 35-43
    2. N. S. Abhyankar, C. H. Yoneshige, B. J. Tomlinson, J. Reilly
      Pages 45-53
    3. G. Baker, D. Féger, A. Little, A. H. Orlowska, T. W. Bradshaw, M. Crook et al.
      Pages 55-61
    4. W. J. Gully, D. S. Glaister, D. W. Simmons
      Pages 63-68
    5. C. S. Kirkconnell, K. D. Price
      Pages 69-78
  4. Long-Life Tactical and Commercial Stirling Coolers

    1. R. Z. Unger, R. B. Wiseman, M. R. Hummon
      Pages 79-86
    2. Y. Ikuta, Y. Suzuki, K. Kanao, N. Watanabe
      Pages 97-102
    3. R. M. Rawlings, S. Miskimins
      Pages 103-110
    4. M. Meijers, A. A. J. Benschop, J. C. Mullié
      Pages 111-118
  5. Long-Life Commercial Pulse Tube Coolers

    1. Y. Hiratsuka, K. Murayama, Y. Maeda, F. Imai, K. Y. Kang, Y. Matsubara
      Pages 119-124
    2. S -Y Kim, J -J Park, S -T Kim, W -S Chung, H -K Lee
      Pages 125-129
  6. Space Pulse Tube Cryocooler Developments

    1. J. Raab, S. Abedzadeh, R. Colbert, J. Godden, D. Harvey, C. Jaco
      Pages 131-138
    2. I. Rühlich, H. Korf, Th. Wiedmann
      Pages 139-144
    3. T. C. Nast, P. J. Champagne, V. Kotsubo, J. Olson, A. Collaco, B. Evtimov et al.
      Pages 145-154

About this book

Introduction

Over the last two years we have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. One class of pulse tubes that has reached maturity is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; they generally provide cooling in the 30 to 100 K temperature range and operate at frequencies from 30 to 60 Hz. The other type of pulse tube cooler making great advances is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation to achieve temperatures in the 2 to 10 K temperature range. Nearly a third of this proceedings covers these new developments in the pulse tube arena. Complementing the work on low-temperature pulse tubes is substantial continued progress on rare earth regenerator materials and Gifford-McMahon coolers. These technologies continue to make great progress in opening up the 2 - 4 K market. Also in the commercial sector, continued interest is being shown in the development of long-life, low-cost cryocoolers for the emerging high temperature superconductor electronics market, particularly the cellular telephone base-station market. At higher temperature levels, closed-cycle J-T or throttle-cycle refrigerators are taking advantage of mixed refrigerant gases, spearheaded in the former USSR, to achieve low-cost cr- cooler systems in the 65 - 80 K temperature range.

Keywords

electronics material refrigeration space

Editors and affiliations

  • R. G. RossJr.
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Bibliographic information

  • DOI https://doi.org/10.1007/b115268
  • Copyright Information Kluwer Academic Publishers 2002
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-306-46567-3
  • Online ISBN 978-0-306-47112-4
  • About this book
Industry Sectors
Electronics
Chemical Manufacturing