Cryocoolers 11

  • R. G. RossJr.

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Government Cryocooler Development and Test Programs

    1. Thom Davis, B. J. Tomlinson, Jim Ledbetter
      Pages 1-9
    2. B. J. Tomlinson, C. H. Yoneshige, N. S. Abhyankar
      Pages 17-25
    3. S. Blankenship, T. Lynn Fountain, T. M. Davis, B. J. Tomlinson
      Pages 27-33
  3. Space Stirling Cryocooler Developments

    1. Kenneth Price, John Reilly, Nandu Abhyankar, Ben Tomlinson
      Pages 35-43
    2. N. S. Abhyankar, C. H. Yoneshige, B. J. Tomlinson, J. Reilly
      Pages 45-53
    3. G. Baker, D. Féger, A. Little, A. H. Orlowska, T. W. Bradshaw, M. Crook et al.
      Pages 55-61
    4. W. J. Gully, D. S. Glaister, D. W. Simmons
      Pages 63-68
    5. C. S. Kirkconnell, K. D. Price
      Pages 69-78
  4. Long-Life Tactical and Commercial Stirling Coolers

    1. R. Z. Unger, R. B. Wiseman, M. R. Hummon
      Pages 79-86
    2. Y. Ikuta, Y. Suzuki, K. Kanao, N. Watanabe
      Pages 97-102
    3. R. M. Rawlings, S. Miskimins
      Pages 103-110
    4. M. Meijers, A. A. J. Benschop, J. C. Mullié
      Pages 111-118
  5. Long-Life Commercial Pulse Tube Coolers

    1. Y. Hiratsuka, K. Murayama, Y. Maeda, F. Imai, K. Y. Kang, Y. Matsubara
      Pages 119-124
    2. S -Y Kim, J -J Park, S -T Kim, W -S Chung, H -K Lee
      Pages 125-129
  6. Space Pulse Tube Cryocooler Developments

    1. J. Raab, S. Abedzadeh, R. Colbert, J. Godden, D. Harvey, C. Jaco
      Pages 131-138
    2. I. Rühlich, H. Korf, Th. Wiedmann
      Pages 139-144
    3. T. C. Nast, P. J. Champagne, V. Kotsubo, J. Olson, A. Collaco, B. Evtimov et al.
      Pages 145-154
    4. R. G. Ross Jr., D. L. Johnson, A. Metzger, V. Kotsubo, B. Evtimov, J. Olson et al.
      Pages 155-162
    5. E. Tward, C. K. Chan, J. Raab, T. Nguyen, R. Colbert, T. Davis
      Pages 163-167
    6. P. B. Bailey, M. W. Dadd, N. Hill, C. F. Cheuk, J. Raab, E. Tward
      Pages 169-174
    7. M. W. Dadd, P. B. Bailey, G. Davey, T. Davis, B. J. Thomlinson
      Pages 175-182
    8. Kenneth Price, Capt. Vladimir Urbancek
      Pages 183-188
    9. P. E. Bradley, R. Radebaugh, J. H. Xiao, D. R. Ladner
      Pages 189-198
    10. C. M. Martin, J. L. Martin
      Pages 199-203
  7. GM-Type Pulse Tube Coolers for Low Temperatures

    1. S. Fujimoto, T. Kurihara, T. Oodo, Y. M. Kang, T. Numazawa, Y. Matsubara
      Pages 213-219
    2. A. Hofmann, H. Pan, L. Oellrich
      Pages 221-227
    3. J. M. Poncet, A. Ravex, I. Charles
      Pages 229-233
    4. J. Yuan, J. Maguire, A. Sidi-Yekhlef, P. Winn
      Pages 235-241
    5. Shaowei Zhu, Masahiro Ichikawa, Masafumi Nogawa, Tatsuo Inoue
      Pages 243-247
    6. J. M. Pfotenhauer, J. H. Baik
      Pages 249-257
  8. Hybrid Cryocoolers Using Pulse Tubes

    1. C. S. Kirkconnell, K. D. Price, M. C. Barr, J. T. Russo
      Pages 259-263
    2. Liqiang Liu, Linghui Gong, Jingtao Liang, Liang Zhang
      Pages 265-272
    3. Y. Matsubara, H. Kobayashi, S. L. Zhou
      Pages 273-280
    4. Z. H. Can, G. B. Chen, G. Thummes, C. Heiden
      Pages 281-289
    5. Guobang Chen, Zhihua Gan, Limin Qiu, Jianping Yu
      Pages 291-299
    6. L. M. Qiu, G. B. Chen, N. Jiang, Y. L. Jiang, J. P. Yu
      Pages 301-307
    7. M. E. H. Tijani, J. Zeegers, A. T. A. M. de Waele
      Pages 309-316
  9. Pulse Tube Analysis and Experimental Measurements

    1. A. Halouane, J -C Marechal, Y. Simon
      Pages 317-326
    2. T. Schmauder, A. Waldauf, M. Thürk, R. Wagner, P. Seidel
      Pages 327-336
    3. S. Jeong, K. Nam, M. G. Kim, H. -M. Chang, E. S. Jeong
      Pages 345-351
    4. L. W. Yang
      Pages 353-362
    5. Yoshikazu Hozumi, Masahide Murakami, Masao Shiraishi
      Pages 363-369
    6. M. Shiraishi, K. Takamatsu, M. Murakami, A. Nakano, T. Iida, Y. Hozumi
      Pages 371-379
  10. GM Refrigerator Developments

    1. T. Satoh, A. Onishi, I. Umehara, Y. Adachi, K. Sato, E. J. Minehara
      Pages 381-386

About this book


Over the last two years we have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. One class of pulse tubes that has reached maturity is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; they generally provide cooling in the 30 to 100 K temperature range and operate at frequencies from 30 to 60 Hz. The other type of pulse tube cooler making great advances is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation to achieve temperatures in the 2 to 10 K temperature range. Nearly a third of this proceedings covers these new developments in the pulse tube arena. Complementing the work on low-temperature pulse tubes is substantial continued progress on rare earth regenerator materials and Gifford-McMahon coolers. These technologies continue to make great progress in opening up the 2 - 4 K market. Also in the commercial sector, continued interest is being shown in the development of long-life, low-cost cryocoolers for the emerging high temperature superconductor electronics market, particularly the cellular telephone base-station market. At higher temperature levels, closed-cycle J-T or throttle-cycle refrigerators are taking advantage of mixed refrigerant gases, spearheaded in the former USSR, to achieve low-cost cr- cooler systems in the 65 - 80 K temperature range.


electronics material refrigeration space

Editors and affiliations

  • R. G. RossJr.
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Bibliographic information

Industry Sectors
Energy, Utilities & Environment