Skip to main content

Micro-electrical Discharge Machining of Hard Brittle Materials

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT,volume 1))

  • 286 Accesses

Abstract

In recent years, the use of single crystals and ceramic materials such as silicon carbide (SiC), alumina, and silicon nitride has received intensive attention in mechanical and manufacturing engineering. However, due to their high hardness, these materials are typically difficult to machine by mechanical machining methods. In particular, the fabrication of microstructures and high aspect ratio micro hole on these hard and brittle materials by using cutting and abrasive machining is very difficult and involves high production cost. As an alternative approach, micro-electrical discharge machining (micro-EDM) is effective. In this chapter, three major approaches that have been used by previous researchers to improve the EDM machinability of low conductivity and insulating ceramic materials such as powder mixed EDM, assisting electrode EDM and electrical discharge milling and grinding, will be overviewed. Then some newly developed technologies for machining hard and brittle materials by using micro-EDM will be introduced. One is hybrid micro-EDM by combining ultrasonic cavitation and carbon nanofibers. The effect of carbon nanofiber concentration and ultrasonic vibration on micro hole geometry, surface topography, and surface roughness will be described. By using the hybrid EDM process, high aspect ratio micro holes and micro dimples were successfully fabricated on RB-SiC. Another example is a hybrid tooling technology using polycrystalline diamond (PCD) for micro-EDM and grinding of single-crystal SiC. This enabled achieving extremely smooth surfaces in nanometer level after EDM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York

    MATH  Google Scholar 

  • Chow HM, Yang LD, Lin CT et al (2008) The use of SiC powder in water as dielectric for micro-slit EDM machining. J Mater Process Technol 195:160–170

    Article  Google Scholar 

  • Chung DK, Shin HS, Park MS et al (2011) Recent researches in micro electrical machining. Int J Precis Eng Manuf 12(2):371–380

    Article  Google Scholar 

  • Clijsters S, Liu K, Reynaerts D et al (2010) EDM technology and strategy development for the manufacturing of complex parts in SiSiC. J Mater Process Technol 210:631–641

    Article  Google Scholar 

  • Descoeudres A (2006) Characterization of electrical discharge machining plasmas. Ecole Polytechnique Federale De Lausanne PhD’s Thesis

    Google Scholar 

  • Ekmekci B, Sayar A (2013) Debris and consequences in micro electric discharge machining of micro-holes. Int J Mach Tool Manu 65:58–67

    Article  Google Scholar 

  • Fukuzawa Y, Mohri N, Tani T et al (2004) Electrical discharge machining properties of noble crystals. J Mater Process Technol 149:393–397

    Article  Google Scholar 

  • Fukuzawa Y, Mohri N, Gotoh H et al (2009) Three-dimensional machining of insulating ceramics materials with electrical discharge machining. Trans Nonferrous Met Soc China 19:s150–s156

    Article  Google Scholar 

  • Gotoh H, Tani T, Mohri N (2016) EDM of insulating ceramics by electrical conductive surface layer control. Procedia CIRP 42:201–205

    Article  Google Scholar 

  • Gunawan SP, Mahardika M, Hamdi M et al (2009) Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-Taguchi approach. Int J Mach Tool Manu 49:1035–1041

    Article  Google Scholar 

  • Gunawan SP, Muslim M, Hamdi M et al (2011) Accuracy improvement in nanographite powder-suspension dielectric fluid for micro-electrical discharge machining process. Int J Adv Manuf Technol 56:143–149

    Article  Google Scholar 

  • Hinduja S, Kunieda M (2013) Modelling of ECM and EDM processes. CIRP Ann 62(2):775–797

    Article  Google Scholar 

  • Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tool Manu 43:1287–1300

    Article  Google Scholar 

  • Hung JC, Lin JK, Yan BH et al (2006) Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micromech Microeng 16:2705–2713

    Article  Google Scholar 

  • Jahan M, Rahman M, Wong YS (2010a) Modelling and experimental investigation on the effect of nanopowder-mixed dielectric in micro-electrodischarge machining of tungsten carbide. Proc Inst Mech Eng B 224(11):1725–1739

    Article  Google Scholar 

  • Jahan M, Rahman M, Wong YS (2010b) Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co. Int J Adv Manuf Technol 53:167–180

    Article  Google Scholar 

  • Ji R, Liu Y, Zhang Y et al (2010) Machining performance and surface integrity of SiC ceramic machined using electrical discharge milling and the mechanical grinding compound process. Proc Inst Mech Eng B 224:1511–1518

    Article  Google Scholar 

  • Ji R, Liu Y, Zhang Y et al (2011) Machining performance of silicon carbide ceramic in end electric discharge milling. Int J Refract Met Hard Mater 29:117–122

    Article  Google Scholar 

  • Kalpakjian S, Schmid SR (2001) Manufacturing engineering and technology, 4th edn. Prentice-Hall, Upper Saddle River, Pearson Publisher, New Jersey

    Google Scholar 

  • Kansal HK, Singh S, Kumar P (2007) Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. J Manuf Process 9(1):13–22

    Article  Google Scholar 

  • Katahira K, Takesue S, Komotori J et al (2014) Micromilling characteristics and electrochemically assisted reconditioning of polycrystalline diamond tool surfaces for ultra-precision machining of high-purity SiC. CIRP Ann 63(1):329–332

    Article  Google Scholar 

  • Konig W, Dauw DF, Levy G et al (1988) EDM-future steps towards the machining of ceramics. CIRP Ann 37(2):623–631

    Article  Google Scholar 

  • Kumar S, Brennen CE (1991) Nonlinear effects in the dynamics of clouds of bubbles. J Acoust Soc Am 89:707–714

    Article  Google Scholar 

  • Lee S, Scarpulla MA, Bamberg E (2013) Effect of metal coating on machining of high purity germanium using wire electrical discharge machining. J Mater Process Technol 213:811–817

    Article  Google Scholar 

  • Liew PJ, Yan J, Kuriyagawa T (2013a) Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide. J Mater Process Technol 213(7):1076–1087

    Article  Google Scholar 

  • Liew PJ, Shimada K, Mizutani M et al (2013b) Fabrication of microstructures on RB-SiC by ultrasonic cavitation assisted micro-electrical discharge machining. Int J Automot Technol 7(6):621–629

    Article  Google Scholar 

  • Liew PJ, Yan J, Kuriyagawa T (2014) Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM. Int J Mach Tool Manu 76:13–20

    Article  Google Scholar 

  • Liu Y, Ji R, Li Q et al (2008) Electrical discharge milling of silicon carbide ceramic with high electrical resistivity. Int J Mach Tools Manuf 48:1504–1508

    Article  Google Scholar 

  • Liu Y, Ji R, Li Q et al (2009) An experimental investigation for electric discharge milling of SiC ceramics with high electrical resistivity. J Alloys Compd 472:406–410

    Article  Google Scholar 

  • Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49:473–488

    Article  Google Scholar 

  • Masuzawa T, Fujino M, Kobayashi K et al (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann 34(1):431–434

    Article  Google Scholar 

  • Mohri N, Fukuzawa Y, Tani T et al (1996) Assisting electrode method for machining insulating ceramics. CIRP Ann 45(1):201–204

    Article  Google Scholar 

  • Morgan CJ (2004) Micro electro-discharge machining: techniques and procedures for micro fabrication. Master’s thesis, University of Kentucky

    Google Scholar 

  • Muttamara A, Fukuzawa Y, Mohri N et al (2003) Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. J Mater Process Technol 140:243–247

    Article  Google Scholar 

  • Muttamara A, Fukuzawa Y, Mohri N et al (2009) Effect of electrode material on electrical discharge machining of alumina. J Mater Process Technol 209:2545–2552

    Article  Google Scholar 

  • Pham DT, Dimov SS, Bigot S et al (2004) Micro-EDM-recent developments and research issues. J Mater Process Technol 149:50–57

    Article  Google Scholar 

  • Puertas I, Luis CJ (2004) A study on the electrical discharge machining of conductive ceramics. J Mater Process Technol 153-154:1033–1038

    Article  Google Scholar 

  • Reynaerts D, Meeusen W, Brussel HV (1998) Machining of three-dimensional microstructures in silicon by electro-discharge machining. Sensor Actuator A 67:159–165

    Article  Google Scholar 

  • Sabur A, Ali MY, Maleque MA et al (2013) Investigation of material removal characteristics in EDM of nonconductive ZrO2 ceramic. Procedia Eng 56:696–701

    Article  Google Scholar 

  • Schumacher BM (2004) After 60 years of EDM the discharge process remains still disputed. J Mater Process Technol 149:376–381

    Article  Google Scholar 

  • Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–86

    Article  Google Scholar 

  • Tanaka H, Shimada S (2013) Damage-free machining of monocrystalline silicon carbide. CIRP Ann 62(1):55–58

    Article  Google Scholar 

  • Tani T, Fukuzawa Y, Nanbu K, Mohri N (2002) Machining phenomena in EDM of insulating ceramics with powder mixed oil. J Jpn Soc Elec Mach Eng 36(81):39–46

    Google Scholar 

  • Tani T, Fukuzawa Y, Mohri N, Saito N, Okada M (2004) Machining phenomena in WEDM of insulating ceramics. J Mater Process Technol 149(1–3):124–128

    Article  Google Scholar 

  • Wang J, Han F, Cheng G, Zhao F (2012) Debris and bubble movements during electrical discharge machining. Int J Mach Tools Manuf 58:11–18

    Article  Google Scholar 

  • Yamamura K, Takiguchi T, Ueda M et al (2011) Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain- free surface. CIRP Ann 60(1):571–574

    Article  Google Scholar 

  • Yan J, Tan TH (2015) Sintered diamond as a hybrid EDM and grinding tool for the micromachining of single-crystal SiC. CIRP Ann Manuf Technol 64:221–224

    Article  Google Scholar 

  • Yeo SH, Tan PC, Kurnia W (2007) Effects of powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining. J Micromech Microeng 17:N91–N98

    Article  Google Scholar 

  • Yi SM, Park MS, Lee YS et al (2008) Fabrication of a stainless steel shadow mask using batch mode micro-EDM. Microsyst Technol 14(3):411–417

    Article  Google Scholar 

  • Yu ZY, Zhang Y, Li J et al (2009) High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM. CIRP Ann Manuf Technol 58:213–216

    Article  Google Scholar 

  • Zahiruddin M, Kunieda M (2012) Comparison of energy and removal efficiencies between micro and macro EDM. CIRP Ann – Manuf Technol 61:187–190

    Article  Google Scholar 

  • Zhang Z, Peng H, Yan J (2013) Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools. Int J Mach Tools Manuf 65:99–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pay Jun Liew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liew, P.J., Yan, J. (2018). Micro-electrical Discharge Machining of Hard Brittle Materials. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-6588-0_25-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6588-0_25-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6588-0

  • Online ISBN: 978-981-10-6588-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Micro-electrical Discharge Machining of Hard Brittle Materials
    Published:
    17 April 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_25-2

  2. Original

    Micro-electrical Discharge Machining of Hard Brittle Materials
    Published:
    08 February 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_25-1