Skip to main content

Photodesorption

Encyclopedia of Astrobiology
  • 265 Accesses

Synonyms

Photoevaporation; Photosputtering

Definition

The absorption of a UV (or X-ray) photon by a molecule condensed on a surface can result in its desorption (direct photodesorption) or in the “kick-out” of a nearby molecule (indirect photodesorption). In space, photodesorption can regulate the locations of “snow-lines,” the transition regions where the dominant phase of volatiles changes from gas to ice (particularly in protoplanetary disks). Photodesorption, from ices and other surfaces that mimic interstellar grain compositions, is characterized experimentally to determine molecule-specific desorption efficiencies and mechanisms.

Overview

In dense and cold regions in space, atoms and molecules freeze out on interstellar grains, forming icy mantles that continue to evolve chemically. Photodesorption connects the surface/ice chemistry with the gas phase in regions that are too cold for efficient thermal ice evaporation. In the presence of strong radiation fields, photodesorption...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Andersson S, van Dishoeck EF (2008) Photodesorption of water ice. A molecular dynamics study. J Astron Astrophys 491:907–916

    Article  ADS  Google Scholar 

  • Andrade DPP, Rocco MLM, Boechat-Roberty HM (2010) X-ray photodesorption from methanol ice. Mon Not R Astron Soc 409:1289–1296

    Article  ADS  Google Scholar 

  • Avouris P, Walkup RE (1989) Fundamental mechanisms and desorption and fragmentation induced by electronic transitions at surfaces. Annu Rev Phys Chem 40:173–206

    Article  ADS  Google Scholar 

  • Bertin M, Fayolle EC, Romanzin C, Öberg KI, Michaut X, Moudens A, Philippe L, Jeseck P, Linnartz H, Fillion J-H (2012) UV photodesorption of interstellar CO ice analogues: from excitation to surface desorption. Phys Chem Chem Phys 14:9929–9935

    Article  Google Scholar 

  • Hama T, Yokoyama M, Yabushita A, Kawasaki M, Andersson S, Western CM, Ashfold MNR, Dixon RN, Watanabe N (2010) A desorption mechanism of water following vacuum-ultraviolet irradiation on amorphous solid water at 90 K. J Chem Phys 132:164508–164616

    Article  ADS  Google Scholar 

  • Öberg KI, Visser R, van Dishoeck EF, Linnartz H (2009a) Photodesorption of ices. II. H2O and D2O. Astrophys J 93:1209–1218

    Article  Google Scholar 

  • Öberg KI, van Dishoeck EF, Linnartz H (2009b) Photodesorption of ices. I. CO, N2 and CO2. J Astron Astrophys 496:281–293

    Article  ADS  Google Scholar 

  • Westley MS, Baragiola RA, Johnson RE, Baratta GA (1995) Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature 373:405–407

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin I. Öberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Öberg, K.I. (2014). Photodesorption. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_1195-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_1195-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Photodesorption
    Published:
    16 March 2023

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1195-5

  2. Original

    Photodesorption
    Published:
    29 April 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1195-4