Skip to main content

Mutation Accumulation Theory

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Evolutionary Psychological Science

Definition

Mutation accumulation theory describes two interconnected bodies of theory: (i) Germ-line mutation accumulation theory attempts to understand both the consequences of and the processes by which a population’s load or burden of spontaneously occurring germ-line mutations increases in the absence of purifying selection, which results from the fitness diminishing effects of these mutations, and (ii) Somatic mutation accumulation theory encompasses the related phenomenon of cell lineages within multicellular organisms accumulating mutations as a result of failures of DNA repair in the course of mitotic cell division. These phenomena have important implications for understanding the origin of variance and covariance among fitness salient traits and the maintenance of population viability in the case of germ-line mutation accumulation and senescence and oncogenesis (the mechanisms by which cancer-causing neoplasms form) in the case of somatic mutation accumulation.

Introduction

Thi...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ajie, B. C., Estes, S., Lynch, M., & Phillips, P. C. (2005). Behavioral degradation under mutation accumulation. Genetics, 170, 655–660.

    Article  Google Scholar 

  • Arkell, T., & Whiteman, A. (1998). Mean household size in mid-Tudor England: Clackclose hundred. Norfolk. Local Population Studies, 60, 20–33.

    Google Scholar 

  • Bryant, E. H., & Reed, D. H. (1999). Fitness decline under relaxed selection in captive populations. Conservation Biology, 13, 665–669.

    Article  Google Scholar 

  • Calhoun, J. B. (1973). Death squared: The explosive growth and demise of a mouse population. Proceedings of the National Academy of Sciences USA, 66, 80–88.

    Google Scholar 

  • Clark, G. (2007). A farewell to alms: A brief economic history of the world. Princeton: Princeton University Press.

    Google Scholar 

  • Crow, J. F. (1997). The high spontaneous mutation rate: Is it a health risk? Proceedings of the National Academy of Sciences USA, 94, 8380–8386.

    Article  Google Scholar 

  • Dickinson, W. J. (2008). Synergistic fitness interactions and a high frequency of beneficial changes among mutations accumulated under relaxed selection in Saccharomyces cerevisiae. Genetics, 178, 1571–1578.

    Article  Google Scholar 

  • D’Onofrio, B. M., Rickert, M. E., Frans, E., et al. (2014). Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry, 71, 432–438.

    Article  Google Scholar 

  • Fernandez, J., & López-Fanjul, C. (1997). Spontaneous mutational genotype-environmental interactions for fitness-related traits in Dosophila melanogaster. Evolution, 51, 856–864.

    Article  Google Scholar 

  • Fieder, M., & Huber, S. (2015). Paternal age predicts offspring chances of marriage and reproduction. American Journal of Human Biology, 27, 339–343.

    Article  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: The Clarendon Press.

    Book  Google Scholar 

  • Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., … Jones, A. R. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.

    Google Scholar 

  • Huber, S., & Fieder, M. (2014). Advanced paternal age is associated with lower facial attractiveness. Evolution and Human Behavior, 35, 298–301.

    Article  Google Scholar 

  • Keightley, P. D., & Caballero, A. (1997). Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA, 94, 3823–3827.

    Article  Google Scholar 

  • Kondrashov, A. S., & Crow, J. F. (1993). A molecular approach to estimating the human deleterious mutation rate. Human Mutation, 2, 229–234.

    Article  Google Scholar 

  • Kong, A., Frigge, M. L., Masson, G., et al. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475.

    Article  Google Scholar 

  • Lesecque, Y., Keightley, P. D., & Eyre-Walker, A. (2012). A resolution of the mutation load paradox in humans. Genetics, 191, 1321–1330.

    Article  Google Scholar 

  • Lomnicki, A., & JasieÅ„ski, M. (2000). Does fitness erode in the absence of selection? An experimental test with Tribolium. Journal of Heredity, 91, 407–411.

    Article  Google Scholar 

  • Lynch, M. (2016). Mutation and human exceptionalism: Our future genetic load. Genetics, 202, 869–875.

    Article  Google Scholar 

  • Lynch, M., Sung, W., Morris, K., et al. (2008). A genome-wide view of the spectrum of spontaneous mutations in yeast. Proceedings of the National Academy of Sciences USA, 105, 9272–9277.

    Article  Google Scholar 

  • Medawar, P. B. (1952). An unsolved problem of biology. London: H.K. Lewis and Company Ltd.

    Google Scholar 

  • Mukai, T. (1964). The genetic structure of natural populations of Drosophila melanogaster. 1. Spontaneous mutation rate of polygenes controlling viability. Genetics, 50, 1–19.

    PubMed  PubMed Central  Google Scholar 

  • Penke, L., Denissen, J. A., & Miller, G. F. (2007). The evolutionary genetics of personality. European Journal of Personality, 21, 549–587.

    Article  Google Scholar 

  • Pflüger, L. S., Oberzaucher, E., Katina, S., Holzleitner, I. J., & Grammer, K. (2012). Cues to fertility: Perceived attractiveness and facial shape predict reproductive success. Evolution and Human Behavior, 33, 708–714.

    Article  Google Scholar 

  • Rühli, F. J., & Henneberg, M. (2013). New perspectives on evolutionary medicine: The relevance of microevolution for human health and disease. BMC Medicine, 11, 115.

    Article  Google Scholar 

  • Shabalina, S. A., Yampolsky, L. Y., & Kondrashov, A. S. (1997). Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proceedings of the National Academy of Sciences USA, 94, 13034–13039.

    Article  Google Scholar 

  • Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioral phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 11, 490–502.

    Article  Google Scholar 

  • Uchimura, A., Higuchi, M., Minakuchi, Y., et al. (2015). Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Research, 25, 1125–1134.

    Article  Google Scholar 

  • Volk, T., & Atkinson, J. (2008). Is child death the crucible of evolution. Journal of Social, Evolutionary, and Cultural Psychology, 2, 247–260. Proceedings of the 2nd Annual Meeting of the North Eastern Evolutionary Psychology Society.

    Article  Google Scholar 

  • Wattenberg, B. J. (1985). The good news is the bad news is wrong. DC: American Enterprise Institute.

    Google Scholar 

  • Wong, W. S. W., Solomon, B. D., Bodian, D. L., et al. (2016). New observations on maternal age effect on germline de novo mutations. Nature Communications, 7, 10486.

    Article  Google Scholar 

  • Woodley of Menie, M. A. (2015). How fragile is our intellect? Estimating losses in general intelligence due to both selection and mutation accumulation. Personality and Individual Differences, 75, 80–84.

    Article  Google Scholar 

  • Woodley of Menie, M. A., & Fernandes, H. B. F. (2016). The secular decline in general intelligence from decreasing developmental stability: Theoretical and empirical considerations. Personality and Individual Differences, 92, 194–199.

    Article  Google Scholar 

  • Woodley of Menie, M. A., Sarraf, M. A., Pestow, R. N., & Fernandes, H. B. F. (2017). Social epistasis amplifies the fitness costs of deleterious mutations, engendering rapid fitness decline among modernized populations. Evolutionary Psychological Sciences, 3, 181–191.

    Article  Google Scholar 

  • Woods, R. (2008). Long-term trends in fetal mortality: implications for developing countries. Bulletin of the World Health Organization, 86, 460–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Woodley of Menie .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woodley of Menie, M.A. (2018). Mutation Accumulation Theory. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_2363-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_2363-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mutation Accumulation Theory
    Published:
    24 April 2018

    DOI: https://doi.org/10.1007/978-3-319-16999-6_2363-3

  2. Mutation Accumulation Theory
    Published:
    10 February 2017

    DOI: https://doi.org/10.1007/978-3-319-16999-6_2363-2

  3. Original

    Mutation Accumulation Theory
    Published:
    12 October 2016

    DOI: https://doi.org/10.1007/978-3-319-16999-6_2363-1