Skip to main content

Functional Neuroscience: Cortical Control of Limb Prosthesis

Encyclopedia of Computational Neuroscience
  • 172 Accesses

Synonyms

Brain-computer interfaces; Brain-machine interfaces; Neuroprostheses

Definition

Cortical control of limb prostheses is a specific type of brain-machine interface (BMI) used to provide motor functions similar to those performed by the upper limbs, such as reaching and grasping. BMIs (also called brain-computer interfaces or BCIs) use neural activity to control external devices. Cortical control of limb prostheses is intended to restore motor function to patients with motor disabilities by allowing the activity of intact brain areas to control the movements of a new actuator.

Detailed Description

Brain-machine interfaces (BMIs) use neural activity from the brain to control external devices (see Fig. 1). This diverse tool has many potential applications. One of the most promising is for the recovery of motor function, where neural activity recorded from intact areas of the central nervous system could be used to restore function to patients with motor disabilities. BMIs could be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison BZ, Neuper C (2010) Could anyone use a BCI? In: Tan DS, Nijholt A (eds) Brain-computer interfaces: applying our minds to human-computer interaction. Springer, London, pp 35–54

    Chapter  Google Scholar 

  • Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14:720–726

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Hwang EJ, Mulliken GH (2010) Cognitive neural prosthetics. Annu Rev Psychol 61:169–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J Neural Eng 4:R32–R57

    Article  PubMed  Google Scholar 

  • Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  PubMed  CAS  Google Scholar 

  • Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456–461

    Article  PubMed  CAS  Google Scholar 

  • Carmena JM (2013) Advances in neuroprosthetic learning and control. PLoS Biol 11:e1001561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol 1:e2

    Article  Google Scholar 

  • Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670

    Article  PubMed  CAS  Google Scholar 

  • Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2012) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Article  PubMed  Google Scholar 

  • Dangi S, Orsborn AL, Moorman HG, Carmena JM (2013) Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Neural Comput 25(7):1693–1731

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    Google Scholar 

  • del Milan JR, Carmena J (2010) Invasive or noninvasive: understanding brain-machine interface technology. IEEE BME Mag 29:16–22

    Google Scholar 

  • Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fetz EE (2007) Volitional control of neural activity: implications for brain-computer interfaces. J Physiol 579:571–579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilja V, Chestek CA, Diester I, Henderson JM, Deisseroth K, Shenoy KV (2011) Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE TBME 58:1891–1899

    Google Scholar 

  • Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, Churchland MM, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A high-performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15:1752–1757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Green AM, Kalaska JF (2011) Learning to move machines with the mind. TINS 34:61–75

    PubMed  CAS  Google Scholar 

  • Hayes MH (1996) Statistical digital signal processing and modeling. Wiley, New York

    Google Scholar 

  • Haykin SS (2002) Adaptive filter theory, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Haykin SS (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New York

    Google Scholar 

  • Heliot R, Orsborn AL, Ganguly K, Carmena JM (2010) System architecture for stiffness control in brain-machine interfaces. IEEE TSMC Part A 40:732–742

    Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    Article  PubMed  CAS  Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, Van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson A, Fetz EE (2011) Interfacing with the computational brain. IEEE TNSRE 19:534–541

    Google Scholar 

  • Kim HK, Carmena JM, Biggs SJ, Hanson TL, Nicolelis MAL, Srinivasan MA (2007) The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm. IEEE TBME 54:1520–1529

    Google Scholar 

  • Koralek AC, Jin X, Long JD 2nd, Costa RM, Carmena JM (2012) Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483(7389):331–335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krusienski DJ, Grosse-Wentrup M, Galán F, Coyle D, Miller KJ, Forney E, Anderson CW (2011) Critical issues in state-of-the-art brain-computer interface signal processing. J Neural Eng 8:025002

    Article  PubMed  PubMed Central  Google Scholar 

  • Krusienski DJ, McFarland DJ, Principe JC (2012) BCI signal processing: feature extraction. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 123–146

    Google Scholar 

  • Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: past, present and future. TINS 29:536–546

    PubMed  CAS  Google Scholar 

  • Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain–computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71

    Article  PubMed  Google Scholar 

  • Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:R1–R13

    Article  PubMed  CAS  Google Scholar 

  • Lu CW, Patil PG, Chestek CA (2012) Current challenges to the clinical translation of brain machine interface technology. In: Clement H, Moro E (eds) International review of neurobiology, vol 107. Elsevier, Amsterdam, pp 137–160

    Google Scholar 

  • McFarland DJ, Krusienski DJ (2012) BCI signal processing: feature translation. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 147–164

    Google Scholar 

  • McFarland DJ, Sarnacki WA, Wolpaw JR (2011) Should the parameters of a BCI translation algorithm be continually adapted? J Neurosci Methods 199:103–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller LE, Hatsopoulos NG (2012) Neuronal activity in motor cortex and related areas. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 15–46

    Google Scholar 

  • Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305:258–262

    Article  PubMed  CAS  Google Scholar 

  • Nunez PL (2012) Electric and magnetic fields produced by the brain. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 45–64

    Google Scholar 

  • O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain–machine–brain interface. Nature 479:228–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto KJ, Kip AL, Kipke DR (2012) Acquiring brain signals from within the brain. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 81–104

    Google Scholar 

  • Peckham PH, Kilgore KL (2013) Challenges and opportunities in restoring function after paralysis. IEEE TBME 60:602–609

    Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev BME 7:327–360

    CAS  Google Scholar 

  • Ramsey NF (2012) Signals reflecting brain metabolic activity. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 65–80

    Google Scholar 

  • Riehle A, Vaadia E (2005) Motor cortex in voluntary movements: a distributed system for distributed functions. CRC Press, Boca Raton

    Google Scholar 

  • Sabes PN (2011) Sensory integration for reaching: models of optimality in the context of behavior and the underlying neural circuits. Prog Brain Res 191:195–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV (2006) A high-performance brain–computer interface. Nature 442:195–198

    Article  PubMed  CAS  Google Scholar 

  • Schalk G, Leuthardt EC (2011) Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng 4:140–154

    Article  PubMed  Google Scholar 

  • Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AB, Taylor DM, Tillery SI (2001) Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 11:701–707

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AB, Cui X, Weber D, Moran D (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52:205–220

    Article  PubMed  CAS  Google Scholar 

  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416:141–142

    Article  PubMed  CAS  Google Scholar 

  • Sitaram R, Lee S, Birbaumer N (2012) BCIs that use brain metabolic signals. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 301–316

    Google Scholar 

  • Srinivasan R (2012) Acquiring brain signals from outside the brain. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford University Press, New York, pp 105–122

    Google Scholar 

  • Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J Neurosci 30:16777–16787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, Shenoy K (2012) A recurrent neural network for closed-loop intracortical brain–machine interface decoders. J Neural Eng 9:026027

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DM, Helms-Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Ting LH, Chvatal SA, Safavynia SA, McKay JL (2012) Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. Int J Numer Method Biomed Eng 28:1003–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Venkatraman S, Carmena JM (2011) Active sensing of target location encoded by cortical microstimulation. IEEE TNSRE 19:317–324

    Google Scholar 

  • Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. J Physiol 579:613–619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A 101:17849–17854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolpaw JR, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University Press, New York

    Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Orsborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Orsborn, A.L., Carmena, J.M. (2013). Functional Neuroscience: Cortical Control of Limb Prosthesis. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_505-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_505-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Functional Neuroscience: Cortical Control of Limb Prostheses
    Published:
    28 May 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_505-3

  2. Original

    Functional Neuroscience: Cortical Control of Limb Prosthesis
    Published:
    04 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_505-2