Skip to main content

Functional Neuroscience: Cortical Control of Limb Prostheses

Encyclopedia of Computational Neuroscience
  • 62 Accesses

Synonyms

Brain-computer interfaces; Brain-machine interfaces; Neuroprostheses

Definition

Cortical control of limb prostheses is a specific type of brain-machine interface (BMI) used to provide motor functions similar to those performed by the upper limbs, such as reaching and grasping. BMIs (also called brain-computer interfaces or BCIs) use neural activity to control external devices. Cortical control of limb prostheses is intended to restore motor function to patients with motor disabilities by allowing the activity of intact brain areas to control the movements of a new actuator.

Detailed Description

BMIs use neural activity from the brain to control external devices (see Fig. 1). This diverse tool has many potential applications. One of the most promising is for the recovery of motor function, where neural activity recorded from intact areas of the central nervous system could be used to restore function to patients with motor disabilities. BMIs could be used to restore motor...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison BZ, Neuper C (2010) Could Anyone Use a BCI? In: Tan DS, Nijholt A (eds) Brain-computer interfaces: applying our minds to human-computer interaction. Springer, London, pp 35–54

    Chapter  Google Scholar 

  • Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14:720–726

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Hwang EJ, Mulliken GH (2010) Cognitive neural prosthetics. Annu Rev Psychol 61:169–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J Neural Eng 4:R32–R57

    Article  PubMed  Google Scholar 

  • Bensmaia S, Miller L (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15(5):313–325

    Article  CAS  PubMed  Google Scholar 

  • Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456–461

    Article  CAS  PubMed  Google Scholar 

  • Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2012) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Article  PubMed  Google Scholar 

  • Dadarlat, M’O’Doherty, J. E., and Sabes, P. N. (2015) A learning-based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci, 18(1), 138–144

    Article  CAS  PubMed  Google Scholar 

  • Dangi S, Orsborn AL, Moorman HG, Carmena JM (2013) Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Neural Comput 25(7):1693–1731

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT press, Cambridge

    Google Scholar 

  • del R Milan J, Carmena J (2010) Invasive or noninvasive: understanding brain-machine Interface technology - conversations in BME. IEEE BME magazine 29:16–22

    Google Scholar 

  • Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetz EE (2007) Volitional control of neural activity: implications for brain-computer interfaces. J Physiol 579:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilja V, Chestek CA, Diester I, Henderson JM, Deisseroth K, Shenoy KV (2011) Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE TBME 58:1891–1899

    Google Scholar 

  • Golub MD, Chase SM, Batista AP, Yu BM (2016) Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr Opin Neurobiol 37:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AM, Kalaska JF (2011) Learning to move machines with the mind. TINS 34:61–75

    PubMed  CAS  Google Scholar 

  • Hayes MH (1996) Statistical digital signal processing and modeling. Wiley, New York

    Google Scholar 

  • Haykin SS (2002) Adaptive filter theory, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Haykin SS (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New York

    Google Scholar 

  • Heliot R, Orsborn AL, Ganguly K, Carmena JM (2010) System architecture for stiffness control in brain-machine interfaces. IEEE TSMCa 40:732–742

    Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, Van der Smagt P et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson A, Fetz EE (2011) Interfacing with the computational brain. IEEE TNSRE 19:534–541

    Google Scholar 

  • Kim HK, Carmena JM, Biggs SJ, Hanson TL, Nicolelis MAL, Srinivasan MA (2007) The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm. IEEE TBME 54:1520–1529

    Google Scholar 

  • Krusienski DJ, Grosse-Wentrup M, Galán F, Coyle D, Miller KJ, Forney E, Anderson CW (2011) Critical issues in state-of-the-art brain-computer interface signal processing. J Neural Eng 8:025002

    Article  PubMed  PubMed Central  Google Scholar 

  • Krusienski DJ, McFarland DJ, Principe JC (2012) BCI signal processing: feature extraction. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. New York, Oxford, pp 123–146

    Google Scholar 

  • Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: past, present and future. TINS 29:536–546

    PubMed  CAS  Google Scholar 

  • Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:R1–R13

    Article  CAS  PubMed  Google Scholar 

  • Lu CW, Patil PG, Chestek CA (2012) Current challenges to the clinical translation of brain machine Interface technology. In: Clement H, Moro E (eds) International Review of Neurobiology, vol 107. Elsevier, Amsterdam, pp 137–160

    Google Scholar 

  • McFarland DJ, Krusienski DJ (2012) BCI signal processing: feature translation. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford, New York, pp 147–164

    Google Scholar 

  • McFarland DJ, Sarnacki WA, Wolpaw JR (2011) Should the parameters of a BCI translation algorithm be continually adapted? J Neurosci Methods 199:103–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller LE, Hatsopoulos NG (2012) Neuronal activity in motor cortex and related areas. In: Wolpaw JR, Wolpaw EW (eds) Brain–Computer Interfaces: Principles and Practice. Oxford, New York, pp 15–46

    Chapter  Google Scholar 

  • Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez PL (2012) Electric and magnetic fields produced by the brain. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford, New York, pp 45–64

    Google Scholar 

  • O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain–machine–brain interface. Nature 479:228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsborn AL, Carmena JM (2013) Creating new functional circuits for action via brain-machine interfaces. Front Comput Neurosci 7:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsborn AL, Pesaran B (2017) Parsing learning in networks using brain-machine interfaces. Curr Opin Neurobiol 46:76–83

    Article  CAS  PubMed  Google Scholar 

  • Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM (2014) Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6):1380–1393

    Article  CAS  PubMed  Google Scholar 

  • Otto KJ, Kip AL, Kipke DR (2012) Acquiring brain signals from within the brain. In: Wolpaw JR, Wolpaw EW (eds) Brain–Computer Interfaces: Principles and Practice. Oxford, New York, pp 81–104

    Chapter  Google Scholar 

  • Peckham PH, Kilgore KL (2013) Challenges and opportunities in restoring function after paralysis. IEEE TBME 60:602–609

    Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev BME 7:327–360

    CAS  Google Scholar 

  • Ramsey NF (2012) Signals reflecting brain metabolic activity. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford, New York, pp 65–80

    Google Scholar 

  • Riehle A, Vaadia E (eds) (2005) Motor cortex in voluntary movements: a distributed system for distributed functions. CRC Press, Boca Raton

    Google Scholar 

  • Sabes PN (2011) Sensory integration for reaching: models of optimality in the context of behavior and the underlying neural circuits. Prog Brain Res 191:195–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Schalk G, Leuthardt EC (2011) Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng 4:140–154

    Article  PubMed  Google Scholar 

  • Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AB, Taylor DM, Tillery SI (2001) Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 11:701–707

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AB, Cui X, Weber D, Moran D (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52:205–220

    Article  CAS  PubMed  Google Scholar 

  • Sitaram R, Lee S, Birbaumer N (2012) BCIs that use brain metabolic signals. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford, New York, pp 301–316

    Google Scholar 

  • Srinivasan R (2012) Acquiring brain signals from outside the brain. In: Wolpaw JR, Wolpaw EW (eds) Brain–computer interfaces: principles and practice. Oxford, New York, pp 105–122

    Google Scholar 

  • Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, Shenoy K (2012) A recurrent neural network for closed-loop intracortical brain–machine interface decoders. J Neural Eng 9:026027

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting LH, Chvatal SA, Safavynia SA, McKay JL (2012) Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. Intl J Numer Meth Biomed Eng 28:1003–1014

    Article  Google Scholar 

  • Venkatraman S, Carmena JM (2011) Active sensing of target location encoded by cortical microstimulation. IEEE TNSRE 19:317–324

    Google Scholar 

  • Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boniger ML, Colinger JL (2015) Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. J Neural Eng 12(1):016011

    Article  CAS  PubMed  Google Scholar 

  • Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. J Physiol 579:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpaw JR, Wolpaw WW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford, New York

    Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Orsborn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orsborn, A.L., Carmena, J.M. (2018). Functional Neuroscience: Cortical Control of Limb Prostheses. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_505-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_505-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Functional Neuroscience: Cortical Control of Limb Prostheses
    Published:
    28 May 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_505-3

  2. Original

    Functional Neuroscience: Cortical Control of Limb Prosthesis
    Published:
    04 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_505-2