Skip to main content

Dynamic Diseases of the Brain

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 26 Accesses

Synonyms

Dynamical diseases; Periodic diseases

Definition

A dynamic disease of the nervous system is a disease that arises from abnormalities in neural control mechanisms. Whereas traditional approaches for classifying neurological diseases are based on (static) anatomical, cellular, and molecular abnormalities, the focus here is on dynamics, namely the variation of signs and symptoms of disease as a function of time. The hallmarks of dynamic diseases are sudden, qualitative changes in the temporal pattern of clinical signs. Identifying a neurological disorder as a dynamic disease has two major implications: (1) the observed dynamics and their responses to various manipulations provide important insights into the nature and abnormality of neural control and (2) based on computational models of the abnormalities, it may be possible to devise novel treatment strategies for dynamic diseases of the brain.

Detailed Description

Historical Perspectives

The concept of a dynamic disease arises...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baier G, Goodfellow M, Taylor PN, Wang Y, Garry DJ (2012) The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front Physiol 3:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Baier G, Taylor PN, Wang Y (2017) Understanding epileptiform after-discharges as self-terminating transients. Front Comput Neurosci 11:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Bak P (1996) How nature works: the science of self–organized criticality. Copernicus, New York

    Book  Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bélair J, Glass L, an der Heiden U, Milton JG (eds) (1995) Dynamical diseases: mathematical analysis of human illness. American Institute of Physics, Woodbury

    Google Scholar 

  • Buice MA, Cowan JD (2009) Statistical mechanics of the neocortex. Prog Biophys Mol Biol 99:53–86

    Article  PubMed  Google Scholar 

  • Cabrera JL (2005) Controlling instability with delayed antagonistic stochastic dynamics. Physica A 356:25–30

    Article  Google Scholar 

  • Cabrera JL, Milton JG (2002) On–off intermittency in a human balancing task. Phys Rev Lett 89:1586702

    Article  CAS  Google Scholar 

  • Chi YM, Wang YT, Wang Y, Maier C, Jung TP, Cauwenberghs C (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Sys Rehab Eng 20:228–235

    Article  Google Scholar 

  • Dahlem MA, Schneider FM, Scöll E (2008) Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke. Chaos 18:026110

    Article  PubMed  CAS  Google Scholar 

  • Ebersole JS, Milton J (2003) The electroencephalogram (EEG): a measure of neural synchrony. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer, New York, pp 51–68

    Chapter  Google Scholar 

  • Eissa TI, Dijkstra K, Brune C, Emerson RG, Goodman RR, van Putten MJAM, McKjann GM Jr, Schevon CA, van Drongelen W, van Gils SA (2017) Cross-scale aspects of neural interactions during human neocortical seizure activity. Proc Natl Acad Sci U S A 114:10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Houssaini K, Ivanov AI, Bernard C, Jirsa VK (2015) Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Phys Rev E 91:010701

    Article  CAS  Google Scholar 

  • Erdi P, Bhattacharya BS, Cochran AM (eds) (2017) Computational neurology and psychiatry. Springer, New York

    Google Scholar 

  • Foley C, Mackey MC (2009) Mathematical model for G–CSF administration after chemotherapy. J Theoret Biol 19:25–52

    Google Scholar 

  • Foss J, Milton J (2000) Multistability in recurrent neural loops arising from delay. J Neurophysiol 84:975–985

    Article  CAS  PubMed  Google Scholar 

  • Foss J, Moss F, Milton JG (1997) Noise, multistability and delayed recurrent loops. Phys Rev E 55:4536–4543

    Article  CAS  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, New York

    Book  Google Scholar 

  • Glass L, Mackey MC (1979) Pathological conditions resulting from instabilities in physiological control systems. Ann N Y Acad Sci 316:214–235

    Article  CAS  PubMed  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    Book  Google Scholar 

  • Goldbeter A (2011) A model for the dynamics of bipolar disorders. Prog Biophys Mol Biol 105:119–127

    Article  PubMed  Google Scholar 

  • Goodfellow M, Schindler K, Baier G (2012a) Self-organized transients in a neural mass model of epileptogenic tissue dynamics. NeuroImage 59:2644–2660

    Article  PubMed  Google Scholar 

  • Goodfellow M, Taylor PN, Wang Y, Garry D, Baier G (2012b) Modeling the role of tissue heterogeneity in epileptic rhythms. Eur J Neurosci 36:2178–2187

    Article  PubMed  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer–Verlag, New York

    Book  Google Scholar 

  • Gupta D, Ossenblok P, van Luijtelaar G (2011) Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy. Med Biol Eng Comput 49:555

    Article  PubMed  Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as a model for a neuron oscillator. J Physiol Lond 305:377–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck CN, King-Stephens D, Massey AD et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation. Final results of the RNS system pivotal trial. Epilepsia 55:432–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Hramov A, Koronovskii AA, Midzyanovskaya IS, Sitnikova E, van Rijn CM (2006) On–off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. Chaos 16:043111

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, New York

    Google Scholar 

  • Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137:2210

    Article  PubMed  PubMed Central  Google Scholar 

  • Jirsa VK, Proix T, Perdikis D, Woodman MM, Wang H, Gonzalez-Martinez J, Bernard C, Bénar C, Guye M, Chauvel P, Bartolomei F (2017) The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage 145(Part B):377–388

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld D, Raccuia–Behling F, Chiel HJ (1990) Circuits constructed from identified Aplysia neurons exhibit multiple patterns of persistent activity. Biophys J 57:697–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, König M, Fr oscher W, Blankenhorn V, Birbaumer N (2001) Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia 42(3):406

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva FH, Pijn JP, Wadman WJ (1994) Dynamics of local neuronal networks: control parameters and state bifurcations in epileptogenesis. Prog Brain Res 102:359–370

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva FH, Blanes W, Kalitzin S, Parra Gomez J, Suffczynski P, Velis FJ (2002) Dynamical diseases of brain systems: the case for epilepsy. Epilepsia 44(Suppl 2):72–83

    Google Scholar 

  • Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis FJ (2003) Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng 50:540–548

    Article  PubMed  Google Scholar 

  • Ma J, Wu J (2007) Multistability in spiking neuron models of delayed recurrent inhibitory loops. Neural Comput 19:212–2148

    Article  Google Scholar 

  • Mackey MC, Van der Heiden U (1984) The dynamics of recurrent inhibition. J Math Biol 19:211–225

    Article  CAS  PubMed  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    Article  CAS  PubMed  Google Scholar 

  • Mackey MC, Van der Heiden U (1982) Dynamical diseases and bifurcations: understanding functional disorders in physiological systems, Funkt. Biol Med 1:156–164

    Google Scholar 

  • Mackey MC, Milton JG (1987) Dynamical diseases. Ann N Y Acad Sci 504:16–32

    Article  CAS  PubMed  Google Scholar 

  • Milanowski P, Suffczynski P (2016) Seizures start without common signatures of critical transitions. Int J Neurol Sys 26:1650053

    Article  Google Scholar 

  • Milton JG (2000) Epilepsy: multistability in a dynamic disease. In: Walleczek J (ed) Self–organized biological dynamics and nonlinear control. Cambridge University Press, New York, pp 374–386

    Chapter  Google Scholar 

  • Milton J (2012) Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 36:2156–2163

    Article  PubMed  Google Scholar 

  • Milton J, Black D (1995) Dynamic diseases in neurology and psychiatry. Chaos 5:8–13

    Article  PubMed  Google Scholar 

  • Milton JG, Foss J (1997) Oscillations and multistability in delayed feedback control. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) The art of mathematical modeling: case studies in ecology, physiology and cell biology. Prentice Hall, New York, pp 179–198

    Google Scholar 

  • Milton J, Jung P (eds) (2003) Epilepsy as a dynamic disease. Springer, New York

    Google Scholar 

  • Milton JG, Chkhenkeli SA, Towle VL (2009) Brain connectivity and the spread of epileptic seizures. In: Jirsa VK, McIntosh AR (eds) Handbook on brain connectivity. Springer, New York, pp 477–503

    Google Scholar 

  • Milton J, Wu J, Campbell SA, Bélair J (2017) Outgrowing neurological diseases: microcircuits, conduction delay and dynamic diseases. In: Erdi P, Bhattacharya S, Cochran A (eds) Computational neurology computational psychiatry: why and how. Springer, New York, pp 11–47

    Chapter  Google Scholar 

  • Momiji H, Monk NAM (2009) Oscillatory Notch-pathway activity in a delay model of neuronal differentiation. Phys Rev E 80:021930

    Article  CAS  Google Scholar 

  • Muldoon SF, Costantini J, Webber WRS, Lesser R, Bassett DS (2018) Locally stable brain states predict suppression of epileptic activity by enhanced cognitive effort. NeuroImage: Clinical 18:599–607

    Article  Google Scholar 

  • Osorio I, Frei MG, Sornette D, Milton J, Lai Y–C (2011) Epileptic seizures: quakes of the brain? Phys Rev E 82:021919

    Article  CAS  Google Scholar 

  • Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 74:189–197

    Article  Google Scholar 

  • Quan A, Osorio I, Ohira T, Milton J (2011) Vulnerability to paroxysmal oscillations in delayed neural networks: a basis for nocturnal frontal lobe epilepsy? Chaos 21:047512

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajna P, Lona C (1989) Sensory stimulation for inhibition of epileptic seizures. Epilepsia 30:168–174

    Article  CAS  PubMed  Google Scholar 

  • Rosch RE, Baldeweg T, Moeller F, Baier G (2017) Network dynamics in the healthy and epileptic developing brain. Network Neurosci 2(1):41

    Article  Google Scholar 

  • Sornette D (2006) Critical phenomena in natural science. Springer series in synergetcs, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Sornette D, Ouillon G (2012) Dragon–kings: mechanisms, statistical methods and empirical evidence. Eur Phys J Special Topics 205:1–26

    Article  Google Scholar 

  • Stead M, Bower M, Brinkmann BH, Lee K, Marsh WR, Meyer FB, Litt B, Van Gompel J, Worrell GA (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133:2789–2797

    Article  PubMed  PubMed Central  Google Scholar 

  • Suffczynski P, Kalitzin S, Lopes Da Silva F (2004) Dynamics of nonconvulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126:467–484

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I (1959) Demonstration of two stable states of the nerve membrane in potassium–rich media. J Physiol Lond 148:306–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G (2014) A computational study of stimulus driven epileptic seizure abatement. PLoS One 9(12):e114316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tenney JR, Fujiwara H, Horn PS, Jacobsen SE, Glaser TA, Rose DF (2013) Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Res 106:113

    Article  PubMed  Google Scholar 

  • Timme M, Wolf F (2008) The simplest problem in the collective dynamics of neural networks: is synchrony stable? Nonlinearity 21:1579–1599

    Article  Google Scholar 

  • Valentín A, Alarcón G, Honavar M, Seoane JJG, Selway PP, Polkey CE, Binnie CD (2005) Single pulse electrical stimulation for identification of structural abnormalities and predictions of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol 4:18–26

    Article  Google Scholar 

  • Venkadesan M, Guckenheimer J, Valero-Cuevas F (2007) Manipulating the edge of stability. J Biomech 40:1653–1661

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Taylor PN, Goodfellow M, Baier G (2012) A phase space approach for modeling of epileptic dynamics. Phys Rev E 85:061918

    Article  CAS  Google Scholar 

  • Wang Y, Goodfellow M, Taylor PN, Baier G (2014) Dynamic mechanisms of neocortical focal seizure onset. PLoS Comp Biol 10(8):e1003787

    Article  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15:1499–1508

    Article  CAS  PubMed  Google Scholar 

  • Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22(5):343–356

    PubMed  PubMed Central  Google Scholar 

  • Westmije I, Ossenblok P, Gunning B, van Luijtelaar G (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50:2538

    Article  Google Scholar 

  • Wilson HR (1999) Spikes, decisions and actions: dynamical foundations of neurosciences. Oxford University Press, New York

    Google Scholar 

  • Yang D-P, Robinson PA (2017) Critical dynamics of Hopf bifurcations in the corticothalamic system: transition from normal arousal states to epileptic seizures. Phys Rev E 95:042410

    Article  PubMed  Google Scholar 

  • Zakynthinaki MS, Stirling JR, Cordent Martinez CA, López Diíaz de Durana A, Quintana MS, Romo GR, Molinueve JS (2010) Modeling the basin of attraction as a two–dimensional manifold from experimental data: applications to balance in humans. Chaos 20:013119

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerold Baier .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baier, G., Milton, J. (2020). Dynamic Diseases of the Brain. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_503-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_503-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Dynamic Diseases of the Brain
    Published:
    11 March 2021

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_503-4

  2. Dynamic Diseases of the Brain
    Published:
    02 June 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_503-3

  3. Original

    Dynamic Diseases of the Brain
    Published:
    22 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_503-2