Skip to main content

Genomic Signature Analysis to Predict Plasmid Host Range

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Molecular Life Sciences

Synopsis

Plasmids differ in their ability to maintain themselves in different hosts, and this determines the extent to which they can spread the genes they carry to bacteria of different species in their local environment. The rate at which new sequence information is accumulating means that it is impracticable to test the host range of all new plasmids empirically so ways of predicting host range from their sequence will provide important ways of classifying plasmids and in some cases assessing risk and directing resources. Different bacteria have different genomic sequence signatures of nucleotide composition, and it appears that plasmids that are associated permanently with bacteria of a single signature type tend to acquire that signature while plasmids that move around more between bacterial types are less adapted to any host type. This short entry describes progress in developing this simple concept as an approach to analyzing plasmid genomes and using this information to predict...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T (2003) Informatics for unveiling hidden genome signatures. Genome Res 13:693–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abe T, Sugawara H, Kinouchi M, Kanaya S, Ikemura T (2005) Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Res 12:281–290

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Suzuki H, Tomita M (2009) Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index. BMC Genomics 10:640

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohlin J (2011) Genomic signatures in microbes – properties and applications. Scientific World J 11:715–725

    Article  CAS  Google Scholar 

  • Campbell A, Mrazek J, Karlin S (1999) Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci U S A 96:9184–9189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalevi D, Dubhashi D, Hermansson M (2006) Bayesian classifiers for detecting HGT using fixed and variable order Markov models of genomic signatures. Bioinformatics 22:517–522

    Article  CAS  PubMed  Google Scholar 

  • Dalevi D, Dubhashi D, Hermansson M (2006) A new order estimator for fixed and variable length Markov models with applications to DNA sequence similarity. Stat Appl Genet Mol Biol 5: Article 8

    Google Scholar 

  • Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11:283–290

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Mrazek J, Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mrazek J (2009) Phylogenetic signals in DNA composition: limitations and prospects. Mol Biol Evol 26:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Norberg P, Bergstrom M, Jethava V, Dubhashi D, Hermansson M (2011) The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2:268

    Article  PubMed Central  PubMed  Google Scholar 

  • Proctor LM (2011) The human microbiome project in 2011 and beyond. Cell Host Microbe 10:287–291

    Article  CAS  PubMed  Google Scholar 

  • Rocha EP, Danchin A (2002) Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294

    Article  CAS  PubMed  Google Scholar 

  • Simmons MP (2008) Potential use of host-derived genome signatures to root virus phylogenies. Mol Phylogenet Evol 49:969–978

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Sota M, Brown CJ, Top EM (2008) Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res 36:e147

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki H, Yano H, Brown CJ, Top EM (2010) Predicting plasmid promiscuity based on genomic signature. J Bacteriol 192:6045–6055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thorsted PB, Macartney DP, Akhtar P et al (1998) Complete sequence of the IncPbeta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990

    Article  CAS  PubMed  Google Scholar 

  • van Passel MW, Bart A, Luyf AC, van Kampen AH, van der Ende A (2006) Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics 7:26

    Article  PubMed Central  PubMed  Google Scholar 

  • van Passel MW, Kuramae EE, Luyf AC, Bart A, Boekhout T (2006) The reach of the genome signature in prokaryotes. BMC Evol Biol 6:84

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilkins BM, Chilley PM, Thomas AT, Pocklington MJ (1996) Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: molecular and evolutionary implications. J Mol Biol 258:447–456

    Article  CAS  PubMed  Google Scholar 

  • Willner D, Thurber RV, Rohwer F (2009) Metagenomic signatures of 86 microbial and viral metagenomes. Environ Microbiol 11:1752–1766

    Article  CAS  PubMed  Google Scholar 

  • Wong K, Finan TM, Golding GB (2002) Dinucleotide compositional analysis of Sinorhizobium meliloti using the genome signature: distinguishing chromosomes and plasmids. Funct Integr Genomics 2:274–281

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Suzuki, H., Brown, C.J., Top, E.M. (2014). Genomic Signature Analysis to Predict Plasmid Host Range. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_574-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_574-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Genomic Signature Analysis to Predict Plasmid Host Range
    Published:
    05 January 2015

    DOI: https://doi.org/10.1007/978-1-4614-6436-5_574-2

  2. Original

    Genomic Signature Analysis to Predict Plasmid Host Range
    Published:
    05 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-6436-5_574-1