Alignment and Morphing for the Boundary Curves of Anatomical Organs

  • Keiko Morita
  • Atsushi Imiya
  • Tomoya Sakai
  • Hidetaka Hontan
  • Yoshitaka Masutani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7626)


In this paper, we develop a tracking method for the deformable boundary curves of biological organs using variational registration method. We first define the relative distortion of a pair of curves using curvatures of curves. This minimum distortion aligns corresponding points of a pair of curves. Then, we derive the mean of curves as the curve which minimises the total distortion of a collection of shapes. We compute the intermediate boundary curve of a pair of curves as the mean of these curves.


Active Contour Boundary Curve Dynamic Time Warping Biological Organ Temporal Align 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hill, D.L.G., et al.: Medical image registration. Phys. Med. Biol. 46, R1–R45 (2001)CrossRefGoogle Scholar
  2. 2.
    Fischer, B., Modersitzki, J.: Ill-posed medicine- an introduction to image registration. Inverse Problem 24, 1–17 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM Journal on Imaging Sciences 2, 800–833 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. PAMI 25, 116–125 (2003)CrossRefGoogle Scholar
  5. 5.
    Baeza-Yates, R., Valiente, G.: An image similarity measure based on graph matching. In: Proc. 7th Int. Symp. String Processing and Information Retrieval, pp. 8–38 (2000)Google Scholar
  6. 6.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by mean s of bipartite graph matching. Image and Vision Computing 27, 950–959 (2009)CrossRefGoogle Scholar
  7. 7.
    Mémoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: NORDIA-CVPR (2008)Google Scholar
  8. 8.
    Arrate, F., Tilak Ratnanather, J., Younes, L.: Diffeomorphic active contours. SIAM J. Imaging Sciences 3, 176–198 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Trans. IP 12, 1274–1286 (2003)MathSciNetGoogle Scholar
  10. 10.
    Tănase, M., Veltkamp, R.C., Haverkort, H.J.: Multiple Polyline to Polygon Matching. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 60–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. PAMI 13, 209–216 (1991)CrossRefGoogle Scholar
  12. 12.
    Stegmann, M.B., Gomez, D.D.: A brief introduction to statistical shape analysis. Informatics and Mathematical Modelling, Technical University of Denmark (2002),
  13. 13.
    Müller, M.: In: Information Retrieval for Music and Motion, ch. 4. Springer (2007)Google Scholar
  14. 14.
    Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: First SIAM International Conference on Data Mining, SDM 2001 (2001),
  15. 15.
    Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning, and testing. IEEE Trans. PAMI 27, 590–602 (2005)CrossRefGoogle Scholar
  16. 16.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. PAMI 25, 116–125 (2003)CrossRefGoogle Scholar
  17. 17.
    Marques, J.S., Abrantes, A.J.: Shape alignment? optimal initial point and pose estimation. Pattern Recognition Letters 18 (1997)Google Scholar
  18. 18.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)CrossRefGoogle Scholar
  19. 19.
    Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. IJCV 70, 55–75 (2006)CrossRefGoogle Scholar
  20. 20.
    Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proc. CVPR 1985, pp. 22–26 (1985)Google Scholar
  21. 21.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. on Pure and Applied Math. bXLII, 577–684 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Keiko Morita
    • 1
  • Atsushi Imiya
    • 2
  • Tomoya Sakai
    • 3
  • Hidetaka Hontan
    • 4
  • Yoshitaka Masutani
    • 5
    • 6
  1. 1.School of Advanced Integration SciencesChiba University, JapanInage-kuJapan
  2. 2.Institute of Media and Information TechnologyChiba University, JapanInage-kuJapan
  3. 3.Department of Computer and Information ScienceNagasaki UniversityNagasakiJapan
  4. 4.Department of Computer ScienceNagoya Institute of TechnologyNagoyaJapan
  5. 5.Department of RadiologyThe University of Tokyo HospitalJapan
  6. 6.Division of Radiology and Biomedical Engineering, Graduate School of MedicineThe University of TokyoBunkyo-kuJapan

Personalised recommendations