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Abstract. In this paper, we develop a tracking method for the de-
formable boundary curves of biological organs using variational regis-
tration method. We first define the relative distortion of a pair of curves
using curvatures of curves. This minimum distortion aligns correspond-
ing points of a pair of curves. Then, we derive the mean of curves as
the curve which minimises the total distortion of a collection of shapes.
We compute the intermediate boundary curve of a pair of curves as the
mean of these curves.

1 Introduction

Morphing is a fundamental technique in computer graphics to interpolate and
generate shapes and objects. In medical application, morphing is used for the
description of deformation process of biological organs. This process predicates
deformable motion of biological organs in human torso such as beating heart,
deformation of lungs during blessing. Follow up analysis of tumors in censer di-
agnosis tracks and predicates deformation of censer. In this paper, we develop
a tracking method for the deformable boundary curves of biological organs us-
ing variational registration method. This registration process between images
clarifies the difference between images which is used for medical diagnosis. This
registration process is mainly achieved by the matching process, which is an
established fundamental idea in pattern recognition. In both structure pattern
recognition [4, 5] and variational registration [1, 3], the mean shape of a collection
of given shapes is interested.
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Shape retrieval categorises and classifies shapes, and finds shapes from por-
tions of shapes. In shape retrieval, the matching of shapes based on the defomor-
phorism of shapes [8, 9, 16, 19] and descriptor of shape boundary contours [10]
are used. In the matching process for discrete shapes, the string edit-distance
[4, 6] computed by dynamic programming is a fundamental tool. Moreover, in
the matching process of images, the variational registration strategy [1, 2] is a
typical tool. Since, in registration of grey-valued images, the deformation is as-
sumed to be relatively small, the point correspondences between the target and
reference images are estimated as a local deformation of images [1–3]. For the
matching of planar curves, we are required to estimate both alignments and local
deformation of curves. In this paper, we separate this problem into alignment
estimation [16, 17] in the normalised set of curves and deformation of curves.

2 Alignment of Curves

For a pair of planar curves c(s) = (c1(s), c2(s))
� and c̄(s) = (c̄1(s), c2(s))

�,
whose lengths are C and C̄, respectively, assuming c(s+C) = c(s) and c(s+C̄) =
c̄(s), the alignment of curves is obtained as

Align(c, c̄) = min
t,ψ

∫ C

0

|c̄(ψ(s) − t)− c(s)|2ds, (1)

where ψ(τ) is a monotone function from the interval [0, C] to the interval [0, C̄]
[13, 14, 16]. The function τ = ψ(s) and the displacement t define the correspon-
dences of points on a pair of curves c(s) and c̄(τ).

The dynamic time warping (DTW) is a fundamental procedure to achieve
curve alignment employing dynamic programming [13]. The time warping some-
times maps a point on a curve to a relatively long interval of another curve.
The derivative dynamic time warping technique (DDTW) [14], which computes
alignment of derivative curves, solves this pathological mapping. Therefore, we
can also use

Align(c, c) = min
t,ψ

∫ C

0

| ˙̄c(ψ(s) − t)− ċ(s)|2ds, (2)

for the derivative of curves [14] ċ and ˙̄c.
For a planar curve Si, the normal curve si is the curve whose length are nor-

malised to unity is a normalised curve. For the normal curve x(s) the unit normal
vector is n(s) = (− sin θ(s), cos θ(s))�, if ẋ(s)/|ẋ(s)| = (cos θ(s), sin θ(s))�. We
call θ(s) the p-expression of the curve. The p-expression is invariant for Euclidean
motion, that is, for curve x(s), y(s) = x(s) + a derives the same p-expression.

We define the log measure between two normal curves as

H(θ1, θ2) =

∫ 1

0

∣∣∣∣ln exp(iθ1(s− t1))

exp(iθ2(s− t2))

∣∣∣∣
2

ds, (3)
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using p-expression of each curve of a pair. Using p-expression of each curve of a
pair, the p-distance of a pair of simple polygonal curve Si and Sj is defined by

D(Si, Sj)
2 = minH(θi, θj) = min

t

∫ 1

0

|θi(s− t)− θj(s)|2ds. (4)

where θi and θj are the p-expressions of the normalised curve si and sj of Si
and Sj , respectively. Then, setting

tij = arg

(
min
t
(

∫ 1

0

|θi(s− tij)− θj(s)|2ds
)
, (5)

we define the alignment of si and sj as θi(s− tij) and θj(s).
The p-expression θ(k) of a normalised polygonal curve, whose vertices are

{xk}nk=1, is computed as

xk − xk−1

|xk − xk−1| = (cos θ(k), sin θ(k))�. (6)

Furthermore, setting θki = θi(kΔ), the distance between a pair of normalised
curves is approximately computed by

dij ≈ min
p

m∑
k=1

|θki − θk−pj |2 (7)

for an appropriately large m such that Δm = 1.
Next, we define the mean φij(s) of a pair of p-expressions θi(s) and θj(s) as

the minimiser of the functional

J(φi, φj , φij , ti, tj) =

∫ 1

0

{|(θi(s− ti)− φi(s))− φij(s)|2

+|(θj(s− t2)− φj(s))− φij(s)|2

+λ|θ̇ij(s)|2 + μ|φ̇i(s)|2 + μ|φ̇j(s)|2
}
ds. (8)

Equation (8) is converted to the problem,

J2(φij) =

∫ 1

0

{|(θi(s− tij)− φi(s)− φij(s))|2

+|(θj(s)− φj(s)− φij(s)|2

+λ|φ̇ij(s)|2 + μ|φ̇i(s)|2 + μ|φ̇j(s)|2
}
ds (9)

since tij aligns a pair of p-expressions, for a generalisation of eq. (9), the initial
points of a collection of curves are required to be aligned.
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Fig. 1. Geometric property of the image boundary of curve. (a) Configuration of the
normal and tangent vectors on a planar simple curve. (b) Morphing of temporal curves.

3 The Mean of Polygonal Curves

Assuming that the correspondence of the vertices of curves Si and Sj in a collec-
tion of curves {Sα}nα are established by minimising eq. (3), we define the distance
between a pair of polygonal curves Si = {fik}nk=1 and Sj = {fjk}nk=1 where
f·k = (x·k, y·k)� is the vertex of the curve S· with the condition f·m+k = f·k, as

d(Si, Sj) = min
uij

k

{
m∑
k=1

{(fik − uijk )− fjk}2 + μ

m∑
k=1

(∇uijk )
2

}

= min
uij

k

{
m∑
k=1

{fik − (fjk − ujik )}2 + μ

m∑
k=1

(∇ujik )
2

}

= d(Sj , Si), (10)

where uijk = −ujik is the displacement between fik and fjk and ∇ stands for the
discrete differential operation along a polygonal curve 1.

Definition 1. Setting uki to be deformation of the vertex fki of the shape Si,
the vertices g of the mean curve S of Si and Sj is the minimiser of the discrete
variational problem

J(Si(fi), S(g), Sj(fj)) = d(Si, S) + d(S, Sj) + λP (S) (11)

1 ∇gk = gk+ 1
2
− gk− 1

2
and ∇2

gk = 1
2
(gk+1 − 2gk + gk−1).



462 K. Morita et al.

where

d(Si, S) =

n∑
k=1

{(fik − uik)− gk}2 +
n∑
k=1

|∇|uik|2,

d(S, Sj) =

n∑
k=1

{(fjk − ujk)− gk}2 +
n∑
k=1

|∇|ujk|2, (12)

P (S) =

n∑
k=1

|∇gk|2.

Setting

D =
1

2

⎛
⎜⎜⎜⎝

−2 1 0 · · · 0 1
1 −2 1 0 · · · 0
...
1 0 · · · 0 1 −2

⎞
⎟⎟⎟⎠ , A =

(
I2 e
e� m

)
, M = Diag(μ, μ︸︷︷︸, λ). (13)

where e = (1, 1)�, we have the Euler-Lagrange equation of eq. (13)

(Im+1 ⊗D)s = (M−1A⊗ I2)s− (M−1 ⊗ In)c, (14)

where Ik is the k × k identity matrix and

s = (u�
i ,u

�
j , g

�)�, c = (f�
i ,f

�
j ,f

�
i + f�

j )�. (15)

Rewriting eq. (14) as

Bs = Ks− c, (16)

the semi-implicit discretisation of the diffusion equation

∂s

∂t
= Bs−Ks+ c (17)

derives the iteration form

(I + τK)s(k+1) = (I + τB)s(k) + τc. (18)

This iteration form implies that

g = (0n, · · · ,0n︸ ︷︷ ︸
m

, In)s
(∞), s(∞) = lim

k→∞
s(k). (19)

Setting uti and u(t+1)i to be deformations from the vertices fti of the mean
curve St+ 1

2
to vertices fti and f(t+1)i of St and St+1, respectively, we define

an interframe curve. Fig. 2 shows morphing and tracking of a temporal curve
sequence using variational mean curve.
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Definition 2. The vertices ft+ 1
2
of the intermediate shape St+ 1

2
is the min-

imiser of the discrete variational problem

J(St(ft), St+ 1
2
(ft+ 1

2
), St+1(ft+1)) = D(St, St+ 1

2
) +D(St+ 1

2
, St+1) + λP (St+ 1

2
)

(20)
where

D(St, St+ 1
2
) =

n∑
k=1

{(fik − uik)− gk}2 +
n∑
k=1

|∇|uik|2,

D(St+ 1
2
, St+1) =

n∑
k=1

{(fjk − ujk)− gk}2 +
n∑
k=1

|∇|ujk|2, (21)

P (St+ 1
2
) =

n∑
k=1

|∇gk|2.

4 Numerical Examples

Fig. 2 shows Images of the boundary curves of tumors observed in the years,
1996, 19980, 2000, 2002, and 2004.

Fig. 3 comparative results between the means and the linear averages of the
years Y . Y ∗, and Y � express the images of the year Y computed by our method
and linear average of corresponding vertices of the curve. In Fig. 4, we have
evaluated the distances D(Y, Y ∗) and D(Y, Y �). These results show our method
derives smooth intermediate curves, by computing the alignment of correspond-
ing vertices and by minimising the relative distortion of curves.

Fig. 2. Images of the boundary curves of tumors. The boundary curves observed in
the years, 1996, 19980, 2000, 2002, and 2004.
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Fig. 3. Performance evaluation. from top to bottom the original images, the means,
and the linear averages of the years Y . Y ∗, and Y � express the images of the year Y
computed by our method and linear average of corresponding vertices of the curve.
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Fig. 4. Evaluation. (a) For the results Fig. 3, we have evaluated the distances D(Y, Y ∗)
and D(Y, Y �). (b) Tracking of corresponding vertices between 1996 data and 2004 data.

Fig.5 shows shape morphing results. From the boundary curves observe by
the years, 1996, 1998, 2000, 2002, and 2004, the boundary curves of the years
1996 + 1

2 , 1997 + 1
2 , 1998 + 1, 2000 + 1, and 2002 + 1 are computed. Fig. 4

(b) shows the result for tracking of corresponding vertices between 1996 data
and 2004 data. The results show that our method estimates intermediate tumor
shapes during the therapy.
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Fig. 5. Shape morphing results. from the boundary curves observe by the years, 1996,
19980, 2000, 2002, and 2004, the boundary curves of the years 1996 + 1

2
, 1997 + 1

2
,

1898 + 1, 2000 + 1, and 2002 + 1 are computed.

5 Conclusions

We first define the relative distortion of a pair of curves using curvatures of
curves. This minimum distortion aligns corresponding points of a pair of curves.
Then, we derive the mean of curves as the curve which minimises the total
distortion of a collection of shapes. We compute the intermediate boundary
curve of a pair of curves as the mean of these curves.

Our method automatically detects and tracks corresponding vertices of the
temporal-deformation curves.
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