Skip to main content

Carrier Scattering at High Electric Fields

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Semiconductor Physics
  • 104 Accesses

Abstract

At high electric fields the scattering of carriers is significantly influenced by carrier heating. Usually scattering is increased and counteracts an enhanced accumulation of carrier energy from the field. Such an increased scattering is observed for interaction with phonons, causing a decrease in carrier mobility: first mostly from acoustical scattering and at higher fields from LO-phonon scattering. The drift velocity is thereby limited to values close to the thermal carrier velocity. The deformed carrier distribution can be approximated by a Boltzmann distribution, assuming a carrier temperature elevated above the lattice temperature. Above the energy of longitudinal optical phonons the distribution is skewed substantially, and a description of the distribution function and carrier mobility by a Fourier series is more appropriate. Also numerical solutions of transport problems are then advantageous.

Karl W. Böer: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This sublinearity occurs as long as no run-away currents preceding the dielectric breakdown are initiated (Yu and Cardona 1996). The run-away current regime will be discussed in Sect. 2.2 of chapter “Carrier Generation”.

  2. 2.

    The parameters vsat and β are obtained from curve-fitting, depending on materials; for Si they are (Canali et al. 1975) for electrons vsat n = 1.53·109×T -0.87 (cm/s), βn = 2.57·10−2×T 0.66 (cm/s), and for holes vsat p = 1.62·108×T -0.52 (cm/s), βp = 0.46×T 0.17 (cm/s), with the temperature given in K.

  3. 3.

    For example, conductivity measurements rely on carrier densities obtained from low-field measurements using Hall-effect data; time-of-flight techniques can hardly exclude shallow-level trapping.

  4. 4.

    Compare to the high-field domains in superlattices discussed in Sect. 2.3.2 of chapter “Carrier Transport in Low-Dimensional Semiconductors”.

  5. 5.

    In strongly inhomogeneous electric fields, the local carrier mobility was found to depend on the product of the electric field and the gradient of the quasi-Fermi potential; see Zakhleniuk (2006).

  6. 6.

    This approximation is no longer acceptable for electrons exceeding the energy of LO phonons, as the tail of the distribution becomes substantially deformed, see Sect. 2.2.1 in chapter “Carrier Generation”.

  7. 7.

    G is the Green function and W is the screened Coulomb potential; GW is employed for calculating the electron exchange-correlation interactions – see also Sects. 2.1.7 and 2.2.3 of chapter “Quantum Mechanics of Electrons in Crystals”.

  8. 8.

    The effective mass in one of the four satellite minima is 0.4 m0; the density-of-state mass is hence (0.43/2 × 4)2/3 m0 = 1.01 m0).

References

  • Abramowitz M, Stegun IA (eds) (1968) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Alberigi-Quaranta A, Jacoboni C, Ottaviani G (1971) Negative differential mobility in III-V and II-VI semiconducting compounds. Rivista del Nuovo Comento 1:445

    Article  ADS  Google Scholar 

  • Asche M (1989) Multivalued hot electron distributions as spontaneous symmetry breaking. Solid State Electron 32:1633

    Article  ADS  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Paolo G (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515

    Article  ADS  Google Scholar 

  • Bernardi M, Vigil-Fowler D, Ong CS, Neaton JB, Louie SG (2015) Ab initio study of hot electrons in GaAs. Proc Natl Acad Sci U S A 112:5291

    Article  ADS  Google Scholar 

  • Böer KW (1985a) High-field carrier transport in inhomogeneous semiconductors. Ann Phys 497:371

    Article  Google Scholar 

  • Böer KW (1985b) Current-voltage characteristics of diodes with and without light. Phys Stat Sol A 87:719

    Article  ADS  Google Scholar 

  • Böer KW, Bogus K (1968) Electron mobility in CdS at high electric fields. Phys Rev 176:899

    Article  ADS  Google Scholar 

  • Böer KW, Voss P (1968) Stationary high-field domains in the range of negative differential conductivity in CdS single crystals. Phys Rev 171:899

    Article  ADS  Google Scholar 

  • Bray R, Brown DM (1960) Lattice scattering mechanisms in p-type germanium. In: Proceedings of the 5th international conference on the physics of semiconductors, Prague, Academic, New York, pp 82–85

    Google Scholar 

  • Brunetti R, Jacoboni C (1984) Transient and stationary properties of hot-carrier diffusivity in semiconductors. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic, Orlando, pp 367–412

    Chapter  Google Scholar 

  • Brunetti R, Jacoboni C, Nava F, Reggiani L, Bosman G, Zijlstra RJJ (1981) Diffusion coefficient of electrons in silicon. J Appl Phys 52:6713

    Article  ADS  Google Scholar 

  • Budd HF (1966) Hot carriers and the variable path method. J Phys Soc Jpn Suppl 21:420

    Article  Google Scholar 

  • Budkin GV, Tarasenko SA (2011) Heating and cooling of a two-dimensional electron gas by terahertz radiation. J Exp Theor Phys 112: 656

    Google Scholar 

  • Burtyka MV, Glukhov OV, Yakovenko VM (1991) Interaction of hot electrons with two-dimensional gas in semiconductor superlattices. Solid State Electron 34:559

    Article  ADS  Google Scholar 

  • Canali C, Majni G, Minder R, Ottaviani G (1975) Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Devices 22:1045

    Article  ADS  Google Scholar 

  • Chambers RG (1952) The kinetic formulation of conduction problems. Proc Phys Soc Lond, Sect A 65:458

    Article  ADS  MATH  Google Scholar 

  • Chen K, Meng X, He F, Zhou Y, Jeong J, Sheehan S, Bank SR, Wang Y (2018) Comparison between grating imaging and transient grating techniques on measuring carrier diffusion in semiconductor. Nanosc Microsc Thermophys Eng 22(4): 348

    Google Scholar 

  • Conwell EM (1967) High-field transport in semiconductors. Academic, New York

    Google Scholar 

  • Cross AJ, Kent AJ, Hawker P, Lehmann D, Cz J, Henini M (1999) Phonon emission by warm electrons in GaAs quantum wells: the effect of well width on the acoustic-optic crossover. Physica B 263:526

    Article  ADS  Google Scholar 

  • Dalven R (1990) Introduction to applied solid state physics, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Dember H (1931) Über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Phys Z 32:554. (On a photoelectric E.M.F. in cuprous oxide crystals, in German)

    Google Scholar 

  • Evans AGR, Robson PN (1974) Drift mobility measurements in thin epitaxial semiconductor layers using time-of-flight techniques. Solid State Electron 17:805

    Article  ADS  Google Scholar 

  • Fang J, Fischetti MV, Schrimpf RD, Reed RA, Bellotti E, Pantelides ST (2019) Electron transport properties of AlxGa1-xN/GaN transistors based on first-principles calculations and Boltzmann-equation Monte Carlo simulations. Phys Rev Appl 11: 044045

    Google Scholar 

  • Ferry DK (1975) High-field transport in wide-band-gap semiconductors. Phys Rev B 12:2361

    Article  ADS  Google Scholar 

  • Ferry DK (1980) Modeling of carrier transport in the finite collision duration regime: effects in submicron semiconductor devices. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. Plenum Press, New York, pp 577–588

    Chapter  Google Scholar 

  • Ferry DK (2021) Non-equilibrium longitudinal optical phonons and their lifetimes. Appl Phys Rev 8: 021324

    Google Scholar 

  • Fischetti MV, Yoder PD, Khatami MM, Gaddemane G, Van de Put ML (2019) “Hot electrons in Si lose energy mostly to optical phonons”: truth or myth? Appl Phys Lett 114: 222104

    Google Scholar 

  • Fröhlich H, Paranjape BV (1956) Dielectric breakdown in solids. Proc Phys Soc Lond, Sect B 69:21

    Article  ADS  MATH  Google Scholar 

  • Giustino F, Cohen ML, Louie SG (2007) Electron-phonon interaction using Wannier functions. Phys Rev B 76:165108

    Article  ADS  Google Scholar 

  • Gunn JB (1963) Microwave oscillations of current in III–V semiconductors. Solid State Commun 1:88

    Article  ADS  Google Scholar 

  • Guzelturk B, Belisle RA, Smith MD, Bruening K, Prasanna R, Yuan Y, Gopalan V, Tassone CJ, Karunadasa HI, McGehee MD, Lindenberg AM (2018) Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron-phonon coupling. Adv Mater 30: 1704737

    Google Scholar 

  • Habegger MA, Fan HY (1964) Oscillatory intrinsic photoconductivity of GaSb and InSb. Phys Rev Lett 12:99

    Article  ADS  Google Scholar 

  • Haug H, Koch SW (1990) Quantum theory of optical and electronic properties of semiconductors. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Henneberger F, Schmidt-Rink S, Göbel EO (eds) (1993) Optics of semiconductor nanostructures. Akademie-Verlag, Berlin

    Google Scholar 

  • Ivanov PA, Levinshtein ME, Palmour JW, Rumyantsev SL, Singh R (2000) ‘Classical’ current-voltage characteristics of 4H-SiC p+-n junction diodes. Semicond Sci Technol 15:908

    Article  ADS  Google Scholar 

  • Iveland J, Martinelli L, Peretti J, Speck JS, Weisbuch C (2013) Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys Rev Lett 110: 177406

    Google Scholar 

  • Jacoboni C, Reggiani L (1979) Bulk hot-electron properties of cubic semiconductors. Adv Phys 28:493

    Article  ADS  Google Scholar 

  • Jacoboni C, Reggiani L (1983) The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys 55:645

    Article  ADS  Google Scholar 

  • Jacoboni C, Canali C, Ottaviani G, Alberigi Quaranta A (1977) A review of some charge transport properties of silicon. Solid State Electron 20:77

    Article  ADS  Google Scholar 

  • Jacoboni C, Lugli P (1989) The Monte Carlo method for semiconductor device simulation. Springer, Wien

    Google Scholar 

  • Jacoboni C, Nava F, Canali C, Ottaviani G (1981) Electron drift velocity and diffusivity in germanium. Phys Rev B 24:1014

    Article  ADS  Google Scholar 

  • Kim D-S, Yu PY (1991) Hot-electron relaxations and hot phonons in GaAs studied by subpicosecond Raman scattering. Phys Rev B 43:4158

    Article  ADS  Google Scholar 

  • Kini RN, Vaisakh CP (2020) Terahertz emission mechanisms in III–V semiconductors: The influence of isoelectronic dopants. In: Biswas A, Banerjee A, Acharyya A, Inokawa H, Roy J (eds) Emerging trends in terahertz solid-state physics and devices. Springer, Singapore, pp 169-187

    Google Scholar 

  • Kivisaari P, Oksanen J, Tulkki J, Sadi T (2015) Monte Carlo simulation of hot carrier transport in III-N LEDs. J Comput Electron 14: 382

    Google Scholar 

  • Kurosawa T (1966) Monte Carlo simulation of hot electron problems. J Phys Soc Jpn Suppl 21:424

    Google Scholar 

  • Maňkoš M, Tromp RM, Reuter MC, Cartier E (1996) Imaging hot-electron emission from metal-oxide-semiconductor structures. Phys Rev Lett 76: 3200

    Google Scholar 

  • Mickevicius R, Reklaitis A (1990) Electron intervalley scattering in gallium arsenide. Semicond Sci Technol 5:805

    Article  ADS  Google Scholar 

  • Miller A (1999) Transient grating studies of carrier diffusion and mobility in semiconductors. In Garmire E, Kost A (eds) Nonlinear Optics in Semiconductors II. Academic, San Diego, pp 287–312

    Google Scholar 

  • Mimila-Arroyo J (2019) On the importance of the junction temperature on obtaining the charge transport parameters of a solar cell. Semicond Sci Technol 34: 065019

    Google Scholar 

  • Minamitani E (2021) Ab initio analysis for the initial process of Joule heating in semiconductors. Phys Rev B 104: 085202

    Google Scholar 

  • Nag BR (1980) Electron transport in compound semiconductors. Springer, Berlin

    Book  Google Scholar 

  • Nag BR (1984) Relaxation of carriers. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic, Orlando, pp 3–44

    Chapter  Google Scholar 

  • Oh KH, Ong CK, Tan BTG (1992) Field dependence of the overshoot phenomena in InP. J Phys Chem Solids 53:555

    Article  ADS  Google Scholar 

  • Ohno Y (1990) Estimation of velocity-overshoot in small size semiconductors. Solid State Electron 33:935

    Article  ADS  Google Scholar 

  • Ohno Y (1994) A new bulk negative differential conductance mechanism with multiple steady states. Semicond Sci Technol 9:615

    Article  ADS  Google Scholar 

  • Price PJ (1977) Calculation of hot electron phenomena. Solid State Electron 21:9

    Article  ADS  Google Scholar 

  • Prior AC (1960) A reversed carrier transport effect in germanium. Proc Phys Soc 76:465

    Article  ADS  Google Scholar 

  • Rees HD (1969) Calculation of distribution functions by exploiting the stability of the steady state. J Phys Chem Solids 30:643

    Article  ADS  Google Scholar 

  • Rees HD (1972) Numerical solution of electron motion in solids. J Phys C 5:641

    Article  ADS  Google Scholar 

  • Reklaitis A (2012) High field electron and hole transport in wurtzite InN. Phys Stat Sol (b) 249:1566

    Article  ADS  Google Scholar 

  • Ridley BK (1997) Electrons and phonons in semiconductor multilayers. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Roberson HS (1993) Statistical thermophysics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Rode DL (1970) Electron mobility in direct-gap polar semiconductors. Phys Rev B 2:1012

    Article  ADS  Google Scholar 

  • Sasaki W, Shibuya M, Mizuguchi K, Hatoyama G (1959) Anisotropy of hot electrons in germanium. J Phys Chem Solids 8:250

    Article  ADS  Google Scholar 

  • Schwierz F (2005) An electron mobility model for wurtzite GaN. Solid State Electron 49:889

    Article  ADS  Google Scholar 

  • Seeger K (2004) Semiconductor physics, 9th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Shibuya M (1955) Hot electron problem in semiconductors with spheroidal energy surfaces. Phys Rev 99:1189

    Article  ADS  MATH  Google Scholar 

  • Shockley W (1951) Hot electrons in germanium and Ohm’s law. Bell Syst Tech J 30:990

    Article  Google Scholar 

  • Siddiqua P, O’Leary SK (2018) Electron transport within the wurtzite and zinc-blende phases of gallium nitride and indium nitride. J Mater Sci Mater Electron 29: 3511

    Google Scholar 

  • Singh J (1993) Physics of semiconductors and their heterostructures. McGraw-Hill, New York

    Google Scholar 

  • Smirl AL (1984) Dynamics of high-density transient electron-hole plasmas in germanium. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic, Orlando, pp 198–273

    Google Scholar 

  • Smirl AL, Moss SC, Lindle JR (1982) Picosecond dynamics of high-density laser-induced transient plasma gratings in germanium. Phys Rev B 25:264

    Article  ADS  Google Scholar 

  • Srivastava GP (1990) The physics of phonons. Hilger, Bristol

    Google Scholar 

  • Tanimura H, Kanasaki J, Tanimura K, Sjakste J, Vast N, Calandra M, Mauri F (2016) Formation of hot-electron ensembles quasiequilibrated in momentum space by ultrafast momentum scattering of highly excited hot electrons photoinjected into the Γ valley of GaAs. Phys Rev B 93:161203

    Article  ADS  Google Scholar 

  • Tanimura H, Tanimura K, Kanasaki J (2021) Ultrafast relaxation of photoinjected nonthermal electrons in the Γ valley of GaAs studied by time- and angle-resolved photoemission spectroscopy. Phys Rev B 104: 245201

    Google Scholar 

  • Tonouchi M (2020) Simplified formulas for the generation of terahertz waves from semiconductor surfaces excited with a femtosecond laser. J Appl Phys 127: 245703

    Google Scholar 

  • van Driel HM (1985) Physics of pulsed laser processing of semiconductors. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol II. Academic, Orlando, pp 57–94

    Google Scholar 

  • Wirner C, Witzany M, Kiener C, Zandler G, Bohm G, Gornik E, Vogl P, Weimann G (1992) Experimental and theoretical investigation of the drift velocity and velocity distribution function in GaAs/AlGaAs heterostructures. Semicond Sci Technol 7:B267

    Article  Google Scholar 

  • Yan Q, Kioupakis E, Jena D, Van de Walle CG (2014) First-principles study of high-field-related electronic behavior of group-III nitrides. Phys Rev B 90: 121201

    Google Scholar 

  • Yilmazoglu O, Mutamba K, Pavlidis D, Karaduman T (2008) First observation of bias oscillations in GaN Gunn diodes on GaN substrate. IEEE Transact Electron Devices 55: 1563

    Google Scholar 

  • Yu PY, Cardona M (1996) Fundamentals of semiconductors, ch 5. Springer, Berlin

    Book  Google Scholar 

  • Zakhleniuk NA (2006) Nonequilibrium drift-diffusion transport in semiconductors in presence of strong inhomogeneous electric fields. Appl Phys Lett 89: 252112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2022). Carrier Scattering at High Electric Fields. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_24-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_24-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Carrier Scattering at High Electric Fields
    Published:
    12 June 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_24-4

  2. Carrier Scattering at High Electric Fields
    Published:
    26 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_24-3

  3. Carrier Scattering at High Electric Fields
    Published:
    28 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_24-2

  4. Original

    Carrier Scattering at High Electric Fields
    Published:
    09 February 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_24-1