Carrier Scattering at High Electric Fields

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



At high electric fields the scattering of carriers is significantly influenced by carrier heating. Usually scattering is increased and counteracts an enhanced accumulation of carrier energy from the field. Such an increased scattering is observed for interaction with phonons, causing a decrease in mobility: first mostly from acoustical scattering and at higher fields from LO-phonon scattering. The drift velocity is thereby limited to values close to the thermal carrier velocity. The deformed carrier distribution can be approximated by a Boltzmann distribution, assuming a carrier temperature elevated above the lattice temperature. Above the energy of longitudinal optical phonons the distribution is skewed substantially, and a description of the distribution function and carrier mobility by a Fourier series is more appropriate. Also numerical solutions of transport problems are then advantageous.


Carrier distribution Carrier heating Diffusion-current saturation Drift-velocity saturation Electron temperature Hot electrons Intervalley scattering Intravalley scattering Lattice temperature Saturation velocity Warm electrons 


  1. Abramowitz M, Stegun IA (eds) (1968) Handbook of mathematical functions. Dover, New YorkGoogle Scholar
  2. Alberigi-Quaranta A, Jacoboni C, Ottaviani G (1971) Negative differential mobility in III-V and II-VI semiconducting compounds. Rivista del Nuovo Comento 1:445CrossRefADSGoogle Scholar
  3. Asche M (1989) Multivalued hot electron distributions as spontaneous symmetry breaking. Solid State Electron 32:1633CrossRefADSGoogle Scholar
  4. Baroni S, de Gironcoli S, Dal Corso A, Paolo G (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515CrossRefADSGoogle Scholar
  5. Bass FG, Yerema VD, Kulagin OP (1996) Emission of hot electrons out of semiconductors. In: Proceeding of the IEEE international vacuum microelectronics conference (IVMC), Piscataway, NJ, USA, pp 107–111Google Scholar
  6. Bernardi M, Vigil-Fowler D, Ong CS, Neaton JB, Louie SG (2015) Ab initio study of hot electrons in GaAs. Proc Natl Acad Sci U S A 112:5291CrossRefADSGoogle Scholar
  7. Böer KW (1985a) High-field carrier transport in inhomogeneous semiconductors. Ann Phys 497:371CrossRefGoogle Scholar
  8. Böer KW (1985b) Current-voltage characteristics of diodes with and without light. Phys Stat Sol A 87:719CrossRefADSGoogle Scholar
  9. Böer KW, Bogus K (1968) Electron mobility in CdS at high electric fields. Phys Rev 176:899CrossRefADSGoogle Scholar
  10. Böer KW, Voss P (1968) Stationary high-field domains in the range of negative differential conductivity in CdS single crystals. Phys Rev 171:899CrossRefADSGoogle Scholar
  11. Bray R, Brown DM (1960) Lattice scattering mechanisms in p-type germanium. In: Proceedings of the 5th international conference on the physics of semiconductors, Prague, Academic, New York, pp 82–85Google Scholar
  12. Brunetti R, Jacoboni C (1984) Transient and stationary properties of hot-carrier diffusivity in semiconductors. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic, Orlando, pp 367–412CrossRefGoogle Scholar
  13. Brunetti R, Jacoboni C, Nava F, Reggiani L, Bosman G, Zijlstra RJJ (1981) Diffusion coefficient of electrons in silicon. J Appl Phys 52:6713CrossRefADSGoogle Scholar
  14. Budd HF (1966) Hot carriers and the variable path method. J Phys Soc Jpn Suppl 21:420CrossRefGoogle Scholar
  15. Burtyka MV, Glukhov OV, Yakovenko VM (1991) Interaction of hot electrons with two-dimensional gas in semiconductor superlattices. Solid State Electron 34:559CrossRefADSGoogle Scholar
  16. Canali C, Majni G, Minder R, Ottaviani G (1975) Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Devices 22:1045CrossRefADSGoogle Scholar
  17. Chambers RG (1952) The kinetic formulation of conduction problems. Proc Phys Soc Lond, Sect A 65:458CrossRefADSzbMATHGoogle Scholar
  18. Conwell EM (1967) High-field transport in semiconductors. Academic, New YorkGoogle Scholar
  19. Cross AJ, Kent AJ, Hawker P, Lehmann D, Cz J, Henini M (1999) Phonon emission by warm electrons in GaAs quantum wells: the effect of well width on the acoustic-optic crossover. Physica B 263:526CrossRefADSGoogle Scholar
  20. Dalven R (1990) Introduction to applied solid state physics, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  21. Dember H (1931) Über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Phys Z 32:554. (On a photoelectric E.M.F. in cuprous oxide crystals, in German)Google Scholar
  22. Evans AGR, Robson PN (1974) Drift mobility measurements in thin epitaxial semiconductor layers using time-of-flight techniques. Solid State Electron 17:805CrossRefADSGoogle Scholar
  23. Ferry DK (1975) High-field transport in wide-band-gap semiconductors. Phys Rev B 12:2361CrossRefADSGoogle Scholar
  24. Ferry DK (1980) Modeling of carrier transport in the finite collision duration regime: effects in submicron semiconductor devices. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. Plenum Press, New York, pp 577–588CrossRefGoogle Scholar
  25. Fröhlich H, Paranjape BV (1956) Dielectric breakdown in solids. Proc Phys Soc Lond, Sect B 69:21CrossRefADSzbMATHGoogle Scholar
  26. Giustino F, Cohen ML, Louie SG (2007) Electron-phonon interaction using Wannier functions. Phys Rev B 76:165108CrossRefADSGoogle Scholar
  27. Gunn JB (1963) Microwave oscillations of current in III–V semiconductors. Solid State Commun 1:88CrossRefADSGoogle Scholar
  28. Habegger MA, Fan HY (1964) Oscillatory intrinsic photoconductivity of GaSb and InSb. Phys Rev Lett 12:99CrossRefADSGoogle Scholar
  29. Haug H, Koch SW (1990) Quantum theory of optical and electronic properties of semiconductors. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  30. Henneberger F, Schmidt-Rink S, Göbel EO (eds) (1993) Optics of semiconductor nanostructures. Akademie-Verlag, BerlinGoogle Scholar
  31. Ivanov PA, Levinshtein ME, Palmour JW, Rumyantsev SL, Singh R (2000) ‘Classical’ current-voltage characteristics of 4H-SiC p+-n junction diodes. Semicond Sci Technol 15:908CrossRefADSGoogle Scholar
  32. Jacoboni C, Reggiani L (1979) Bulk hot-electron properties of cubic semiconductors. Adv Phys 28:493CrossRefADSGoogle Scholar
  33. Jacoboni C, Reggiani L (1983) The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys 55:645CrossRefADSGoogle Scholar
  34. Jacoboni C, Canali C, Ottaviani G, Alberigi Quaranta A (1977) A review of some charge transport properties of silicon. Solid State Electron 20:77CrossRefADSGoogle Scholar
  35. Jacoboni C, Nava F, Canali C, Ottaviani G (1981) Electron drift velocity and diffusivity in germanium. Phys Rev B 24:1014CrossRefADSGoogle Scholar
  36. Kim D-S, Yu PY (1991) Hot-electron relaxations and hot phonons in GaAs studied by subpicosecond Raman scattering. Phys Rev B 43:4158CrossRefADSGoogle Scholar
  37. Kurosawa T (1966) Monte Carlo simulation of hot electron problems. J Phys Soc Jpn Suppl 21:424Google Scholar
  38. Lebwohl PA, Price PJ (1971) Hybrid method for hot electron calculations. Solid State Commun 9:1221CrossRefADSGoogle Scholar
  39. Mickevicius R, Reklaitis A (1990) Electron intervalley scattering in gallium arsenide. Semicond Sci Technol 5:805CrossRefADSGoogle Scholar
  40. Nag BR (1980) Electron transport in compound semiconductors. Springer, BerlinCrossRefGoogle Scholar
  41. Nag BR (1984) Relaxation of carriers. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic, Orlando, pp 3–44CrossRefGoogle Scholar
  42. Oh KH, Ong CK, Tan BTG (1992) Field dependence of the overshoot phenomena in InP. J Phys Chem Solids 53:555CrossRefADSGoogle Scholar
  43. Ohno Y (1990) Estimation of velocity-overshoot in small size semiconductors. Solid State Electron 33:935CrossRefADSGoogle Scholar
  44. Ohno Y (1994) A new bulk negative differential conductance mechanism with multiple steady states. Semicond Sci Technol 9:615CrossRefADSGoogle Scholar
  45. Price PJ (1977) Calculation of hot electron phenomena. Solid State Electron 21:9CrossRefADSGoogle Scholar
  46. Prior AC (1960) A reversed carrier transport effect in germanium. Proc Phys Soc 76:465CrossRefADSGoogle Scholar
  47. Rees HD (1969) Calculation of distribution functions by exploiting the stability of the steady state. J Phys Chem Solids 30:643CrossRefADSGoogle Scholar
  48. Rees HD (1972) Numerical solution of electron motion in solids. J Phys C 5:641CrossRefADSGoogle Scholar
  49. Reklaitis A (2012) High field electron and hole transport in wurtzite InN. Phys Stat Sol (b) 249:1566CrossRefADSGoogle Scholar
  50. Ridley BK (1997) Electrons and phonons in semiconductor multilayers. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  51. Roberson HS (1993) Statistical thermophysics. Prentice-Hall, Englewood CliffsGoogle Scholar
  52. Rode DL (1970) Electron mobility in direct-gap polar semiconductors. Phys Rev B 2:1012CrossRefADSGoogle Scholar
  53. Sasaki W, Shibuya M, Mizuguchi K, Hatoyama G (1959) Anisotropy of hot electrons in germanium. J Phys Chem Solids 8:250CrossRefADSGoogle Scholar
  54. Schwierz F (2005) An electron mobility model for wurtzite GaN. Solid State Electron 49:889CrossRefADSGoogle Scholar
  55. Seeger K (2004) Semiconductor physics, 9th edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  56. Shibuya M (1955) Hot electron problem in semiconductors with spheroidal energy surfaces. Phys Rev 99:1189CrossRefADSzbMATHGoogle Scholar
  57. Shockley W (1951) Hot electrons in germanium and Ohm’s law. Bell Syst Tech J 30:990CrossRefGoogle Scholar
  58. Singh J (1993) Physics of semiconductors and their heterostructures. McGraw-Hill, New YorkGoogle Scholar
  59. Smirl AL (1984) Dynamics of high-density transient electron-hole plasmas in germanium. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic, Orlando, pp 198–273Google Scholar
  60. Smirl AL, Moss SC, Lindle JR (1982) Picosecond dynamics of high-density laser-induced transient plasma gratings in germanium. Phys Rev B 25:264CrossRefADSGoogle Scholar
  61. Srivastava GP (1990) The physics of phonons. Hilger, BristolGoogle Scholar
  62. Tanimura H, Kanasaki J, Tanimura K, Sjakste J, Vast N, Calandra M, Mauri F (2016) Formation of hot-electron ensembles quasiequilibrated in momentum space by ultrafast momentum scattering of highly excited hot electrons photoinjected into the Γ valley of GaAs. Phys Rev B 93:161203CrossRefADSGoogle Scholar
  63. van Driel HM (1985) Physics of pulsed laser processing of semiconductors. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol II. Academic, Orlando, pp 57–94Google Scholar
  64. Wirner C, Witzany M, Kiener C, Zandler G, Bohm G, Gornik E, Vogl P, Weimann G (1992) Experimental and theoretical investigation of the drift velocity and velocity distribution function in GaAs/AlGaAs heterostructures. Semicond Sci Technol 7:B267CrossRefGoogle Scholar
  65. Yu PY, Cardona M (1996) Fundamentals of semiconductors, ch 5. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations