Metastable Systems under Pressure

  • Sylwester Rzoska
  • Aleksandra Drozd-Rzoska
  • Victor Mazur

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Supercooled, glassy system

    1. K. L. Ngai, S. Capaccioli, D. Prevosto, M. Paluch
      Pages 3-30
    2. Sylwester J. Rzoska, Aleksandra Drozd-Rzoska, Attila R. Imre
      Pages 31-37
    3. S. Capaccioli, K. Kessairi, D. Prevosto, Md. Shahin Thayyil, M. Lucchesi, P. A. Rolla
      Pages 39-52
    4. Muriel Rovira-Esteva, Luis C. Pardo, Josep LL. Tamarit, F. Javier Bermejo
      Pages 63-77
    5. Luis Carlos Pardo, Muriel Rovira-Esteva, Josep Lluis Tamarit, Nestor Veglio, Francisco Javier Bermejo, Gabriel Julio Cuello
      Pages 79-91
  3. Liquid crystals

    1. Milan Ambrozic, Timothy J. Sluckin, Matej Cvetko, Samo Kralj
      Pages 109-124
    2. Brigita Rožič, Marko Jagodič, Sašo Gyergyek, Gojmir Lahajnar, Vlad Popa-Nita, Zvonko Jagličić et al.
      Pages 125-139
  4. Near-critical mixtures

    1. F. Javier Bermejo, Louis Letamendia
      Pages 153-166
    2. Sylwester J. Rzoska, Aleksandra Drozd Rzoska
      Pages 167-179
    3. Yuri A. Freiman, Balázs Hetényi, Sergei M. Tretyak
      Pages 181-194
  5. Water and liquid-liquid transitons

    1. Kevin Stokely, Marco G. Mazza, H. Eugene Stanley, Giancarlo Franzese
      Pages 197-216
    2. Sergey Artemenko, Taras Lozovsky, Victor Mazur
      Pages 217-232
    3. Attila R. Imre, Gábor Házi, Thomas Kraska
      Pages 271-278

About these proceedings

Introduction

recently discovered advantages of amorphous forms of medicines/pharmaceutical products which focused a significant part of industry-related efforts on the GFA (Glass Forming Ability) and the glass temperature (T) versus pressure g dependences. 1 b ? 0 ? ? o ? P ? Pg P ? Pg 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g ? 0 ? ? ? ? c + Pg ? ? ? ? 400 1 b 0 o ? ? ? ? P ? P P ? P g g 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g 0 ? ? ? ? c ? + P max g ? ? ? ? T ~7 GPa g max P ~ 304 K Liquid g 300 1 HS glass 0 200 -1 mSG ?=0. 044 Liquid -2 100 -3 glass ?=0. 12 -1. 2 -0. 9 -0. 6 -0. 3 0. 0 log T 10 scaled -1 0 1 2 3 4 5 6 7 8 9 10 11 12 P (GPa) g 19 Figure 1. T he pressure evolution of the glass temperature in gl Th ye s cerol ol . id curve shows the parameterization of experimental data via the novel, modifie d Glat Sizm elon type equation, given in the Figure.

Keywords

Biology Chemistry Glass transition NATO Peace Rhe Science Security Sub-Series A System critical phenomena liquid crystals liquid-liquid transition polymer physics soft matter physics

Editors and affiliations

  • Sylwester Rzoska
    • 1
  • Aleksandra Drozd-Rzoska
    • 1
  • Victor Mazur
    • 2
  1. 1.Department of Biophysics and Molecular Physics Institute of PhysicsUniversity of SilesiaKatowicePoland
  2. 2.Department of ThermodynamicsOdessa State Academy of Refrigeration (OSAR)OdessaUkraine

Bibliographic information

  • DOI https://doi.org/10.1007/978-90-481-3408-3
  • Copyright Information Springer Science+Business Media B.V. 2010
  • Publisher Name Springer, Dordrecht
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-90-481-3406-9
  • Online ISBN 978-90-481-3408-3
  • Series Print ISSN 1874-6489
  • About this book
Industry Sectors
Electronics
Chemical Manufacturing