Skip to main content

Anomalous Decoupling of the dc Conductivity and the Structural Relaxation Time in the Isotropic Phase of a Rod-Like Liquid Crystalline Compound

  • Conference paper
Metastable Systems under Pressure

Abstract

Recently, the isotropic phase of rod-like liquid crystalline compounds is advised as an experimental model system for studying complex glassy dynamics. One of unique phenomena occuring close to the glass temperature, for the time scale 10−7±1 s <τ < τ (T g ) ≈ 100s, is the fractional Debye-Stokes-Einstein (FDSE) behaviour στ = const with S<1, i.e. the coupling of dc conductivity (σ, translational processes) and dielectric (structural) relaxation time (τ, orientational processes). It is shown that this relation may be found also in the isotropic phase of nematic liquid crystalline compounds n-pentylcyanobiphenyl (5CB), although surprisingly for time-scales τ<10−8 s. The application of the derivative based analysis revealed a change of S on cooling towards the isotropic — nematic transition. The optimal description of the evolution of relaxation time and conductivity by the mode-coupling theory (MCT) dependence in the isotropic phase is shown: τ(t) ∞ (TT Mct ) and σ (T) ∞ (T-T MCT ), where T MCT T I−N −33K and T > T I−N is shown. The link between this behavior and the FDSE is suggested, namely: S = ϕ′/ϕ. Finally the call for further pressure studies is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donth, E. (2001) The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials (Springer Verlag, Berlin)

    Google Scholar 

  2. Kremer, F., and Shoenhals, A. (eds.) (2003) Broad Band Dielectric Spectroscopy (Springer, Berlin)

    Google Scholar 

  3. Rzoska, S. J., and Mazur, V. (eds.) (2006) Soft Matter Under Exogenic Impacts, NATO Sci. Series II, (Springer, Berlin), vol. 24

    Google Scholar 

  4. Kivelson, S. A., and Tarjus, G. (2008) In search of a theory of supercooled liquids, Nature Materials 7, 831–833

    Article  ADS  Google Scholar 

  5. McKenna, G. B. (2008) Diverging views on glass transition, Nature Physics 4, 673–674

    Article  ADS  Google Scholar 

  6. Hecksher, T., Nielsen, A. I., Olsen, N. B., and Dyre, J. C. (2008) Little evidence for dynamic divergences in ultraviscous molecular liquids, Nature Physics 4, 737–741

    Article  Google Scholar 

  7. Douglas, J. F., Leporini, D. (1998) Obstruction model of the fractional Stokes-Einstein relation in glass-forming liquids, J. Non-Cryst. Solids 23–237, 137–141

    Article  Google Scholar 

  8. Corezzi, S., Lucchesi, M., Rolla P. A., Capaccioli, S., Gallone, G. (1999) Temperature and pressure dependences of the relaxation dynamics of supercooled systems explored by dielectric spectroscopy, Phil. Mag. B 79, 1953–1963

    ADS  Google Scholar 

  9. Hensel Bielowka, S., Psurek, T., Ziolo, J., and Paluch, M. (2001) Test of the fractional Debye-Stokes-Einstein equation in low-molecular-weight glass-forming liquids under condition of high compression, Phys. Rev. E 63, 062301

    Article  ADS  Google Scholar 

  10. Wang, C. H. (2002) Enhancement of translational diffusion coefficient of a probe in a rotationally anisotropic fluid, Phys. Rev. E 66, 021201

    Article  ADS  Google Scholar 

  11. Funke, K., Banhatti, R. D., Brueckner, S., Cramer, C., and Wilmer, D. (2002) Dynamics of mobile ions in crystals, glasses and melts, described by the concept of mismatch and relaxation, Solid State Ionics 154–155, 65–74

    Article  Google Scholar 

  12. Cutroni, M., Mandanici, A., and De Francesco, L. (2002) Fragility, stretching parameters and decoupling effect on some supercooled liquids, J. Non-Cryst. Solids 307–310, 449–454

    Article  Google Scholar 

  13. Power, G., Johari, P., and Vij, J. K. (2002) Effects of ions on the dielectric permittivity and relaxation rate and the decoupling of ionic diffusion from dielectric relaxation in supercooled liquid and glassy 1-propanol, J. Chem. Phys. 116, 419–4201

    Article  Google Scholar 

  14. Bordat, P., Affouard, F., Descamps, M., and Mueller-Plathe, F. (2003) The breakdown of the Stokes—Einstein relation in supercooled binary liquids, J. Phys.: Condens. Matt. 15, 5397–5407

    Article  ADS  Google Scholar 

  15. Psurek, T., Ziolo, J., and Paluch, M. (2004) Analysis of decoupling of DC conductivity and structural relaxation time in epoxies with different molecular topology, Physica A 331, 353–364

    Article  ADS  Google Scholar 

  16. Richert, R. (2005) Dielectric responses in disordered systems: From molecules to materials, J. Non-Cryst. Solids 351, 2716–2722

    Article  ADS  Google Scholar 

  17. Becker, S. R., Poole, P. H., and Starr, F. W. (2006) Fractional Stokes-Einstein and Debye-Stokes-Einstein Relations in a Network-Forming Liquid, Phys. Rev. Lett. 97, 055901

    Article  ADS  Google Scholar 

  18. Drozd-Rzoska, A., and Rzoska, S. J. (2006) Derivative-based analysis for temperature and pressure evolution of dielectric relaxation times in vitrifying liquids, Phys. Rev. E 73, 041502

    Article  ADS  Google Scholar 

  19. Drozd-Rzoska, A., Rzoska. S. J., Roland, C. M., and Imre, A. R. (2008) On the pressure evolution of dynamic properties of supercooled liquids J. Phys.: Condens. Matt. 20, 244103

    Article  ADS  Google Scholar 

  20. Novikov, V. N., and Sokolov, A. P. (2003) Universality of the dynamic crossover in glass-forming liquids: a “magic” relaxation time, Phys. Rev. E 67, 031507

    Article  ADS  Google Scholar 

  21. Demus, D., Goodby, J., Gray, G. W., Spiess, H. W., and Vill, V. (eds.) (1998) Handbook of Liquid Crystals, edited by vol. 1: Fundamentals (Springer, Berlin)

    Google Scholar 

  22. Drozd-Rzoska, A., Rzoska, S. J., and Czupryński, K. (2000) Phase transitions from the isotropic liquid to liquid crystalline mesophases studied by “linear” and “nonlinear” static dielectric permittivity, Phys. Rev. E 61, 5355–5360

    Article  ADS  Google Scholar 

  23. Rzoska, S. J., Paluch, M., Drozd-Rzoska, A., Paluch, M., Janik, P., Zioło J., and Czupryński, K. (2001) Glassy and fluidlike behavior of the isotropic phase of mesogens in broad-band dielectric, Europ. Phys. J. E 7, 387

    Google Scholar 

  24. Rzoska, S. J., and Drozd-Rzoska, A. (2002) On the tricritical point of the isotropic — nematic transition in a rod-like mesogen hidden in the negative pressure region, in NATO Sci. Series II, vol. 84, Liquids under negative pressures, eds.: Imre, A. R., Maris, H. J., and Williams P. R. (Kluwer-Springer, Dordrecht) p. 116

    Google Scholar 

  25. Drozd-Rzoska, A. (2006) Heterogeneity-related dynamics in isotropic n-pentylcyanobiphenyl, Phys. Rev. E 73, 022501

    Article  ADS  Google Scholar 

  26. Drozd-Rzoska, A. (2009) Glassy dynamics of liquid crystalline 4'-n-pentyl-4-cyanobiphenyl (5CB) in the isotropic and supercooled nematic phase, J. Chem. Phys. 130, 234910

    Article  ADS  Google Scholar 

  27. Cang, H., Li, J., Novikov, V. N., and Fayer, M. D. (2003) J. Chem. Phys. 119, 10421

    Article  ADS  Google Scholar 

  28. Anisimov, M. A. Critical Phenomena in Liquids and in Liquid Crystals (1992) (Gordon and Breach, Reading)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Drozd-Rzoska, A., Rzoska, S.J. (2010). Anomalous Decoupling of the dc Conductivity and the Structural Relaxation Time in the Isotropic Phase of a Rod-Like Liquid Crystalline Compound. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_10

Download citation

Publish with us

Policies and ethics