Skip to main content

Reorientational Relaxation Time at the Onset of Intermolecular Cooperativity

  • Conference paper
Metastable Systems under Pressure

Abstract

For three liquids, salol, propylene carbonate, and o-terphenyl, we show that the relaxation time or the viscosity at the onset of Arrhenius behavior is a material constant. Thus, while the temperature of this transition can be altered by the application of pressure, the time scale of the dynamics retains a characteristic, pressure-independent value. Since the onset of an Arrhenius temperature-dependence and the related Debye relaxation behavior signify the loss of intermolecular constraints on the dynamics, our result indicates that intermolecular cooperativity effects are governed by the time scale for structural relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roland, C.M. (2008) Characteristic relaxation times and their invariance to thermodynamic conditions, Soft Matter 4, 2316

    Article  Google Scholar 

  2. Roland, C.M., Hensel-Bielowka, S., Paluch, M., and Casalini, R. (2005) Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure, Rep. Prog. Phys. 68, 1405

    Article  ADS  Google Scholar 

  3. Casalini, R., and Roland, C.M. (2004) Thermodynamical scaling of the glass transition dynamics, Phys. Rev. E 69, 062501

    Article  ADS  Google Scholar 

  4. Alba-Simionesco, C., Cailliaux, A., Alegria A., and Tarjus, G. (2004) Scaling out the density dependence of the á relaxation in glass-forming polymers, Europhys. Lett. 68, 58

    Article  ADS  Google Scholar 

  5. Dreyfus, C., Le Grand, A., Gapinski, J., Steffen, W., and Patkowski, A. (2004) Scaling the á-relaxation time of supercooled fragile organic liquids, Eur. J. Phys. 42, 309

    ADS  Google Scholar 

  6. Win, K.Z., and Menon, N. (2006) Glass transition of glycerol in the volume-temperature plane, Phys. Rev. E 73, 040501

    Article  ADS  Google Scholar 

  7. Urban, S., and Würflinger, A. (2005) Thermodynamical scaling of the low frequency relaxation time in liquid crystalline phases, Phys. Rev. E 72, 021707

    Article  ADS  Google Scholar 

  8. Tsolou, G., Harmandaris, V.A., and Mavrantzas, V.G. (2006) Atomistic molecular dynamics simulation of the temperature and pressure dependences of local and terminal relaxations in cis-1,4-polybutadiene, J. Chem. Phys. 124, 084906

    Article  ADS  Google Scholar 

  9. Budzien, J., McCoy, J.D., and Adolf, D.B. (2004) General relationships between the mobility of a chain fluid and various computed scalar metrics, J. Chem. Phys. 121, 10291

    Article  ADS  Google Scholar 

  10. Coslovich, D., and Roland, C.M. (2008) Thermodynamic scaling of the diffusion coefficient in supercooled Lennard-Jones liquids J. Phys. Chem. B 112, 1329

    Article  Google Scholar 

  11. Roland, C.M., Bair, S., and Casalini, R. (2006) Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids, J. Chem. Phys. 125, 124508

    Article  ADS  Google Scholar 

  12. Pawlus, S., Casalini, R., Roland, C.M., Paluch, M., Rzoska, S.J., and Ziolo, J. (2004) Temperature and volume effects on the change of dynamics in propylene carbonate, Phys. Rev. E 70, 061501

    Article  ADS  Google Scholar 

  13. Ngai, K.L., and Tsang, K.Y. (1999) Similarity of relaxation in supercooled liquids and interacting arrays of oscillators, Phys. Rev. E 60, 4511

    Article  ADS  Google Scholar 

  14. Stickel, F., Fischer, E.W., and Richert, R. (1996) Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data, J. Chem. Phys. 104, 2043

    Article  ADS  Google Scholar 

  15. Comez, L., Fioretto, E., Kriegs, H., and Steffen, W. (2004) Slow dynamics of salol: A pressure- and temperature-dependent light scattering study, Phys. Rev. E 70, 011504

    Article  ADS  Google Scholar 

  16. Hansen, A., Stickel, F., Richert, R., and Fischer, E. W. (1998) Dynamics of glass-forming liquids. IV. True activated behavior above 2GHz in the dielectric a-relaxation of organic liquids, J. Chem. Phys. 108, 6408

    Article  ADS  Google Scholar 

  17. Tolle, A. (2001) Neutron scattering studies of the model glass former ortho-terphenyl, Rep. Prog. Phys. 64, 1473

    Article  ADS  Google Scholar 

  18. Naoki, M., Endou, H., and Matsumoto, K. (1987) Pressure effects on dielectric-relaxation of supercooled ortho-terphenyl, J. Phys. Chem. 91, 4169

    Article  Google Scholar 

  19. Hansen, C., Stickel, F., Berger, T., Richert, R., and Fischer, E.W. (1997) Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β- relaxation of 1-propanol and o-terphenyl, J. Chem. Phys. 107 (4); Greet, R.J., and Magill, J.H. (1967). An empirical corresponding-states relationship for liquid viscosity, J. Phys. Chem. 71, 1746

    Google Scholar 

  20. Roland, C.M., Casalini, R., and Paluch, M. (2003) Isochronal temperature-pressure superpositioning of the α-relaxation in type-A glass formers, Chem. Phys. Lett. 367, 259

    Article  ADS  Google Scholar 

  21. Ngai, K.L., Casalini, R., Capaccioli, S., Paluch, M., and Roland, C.M. (2005) Do theories of the glass transition, in which the structural relaxation time does not define the dispersion of the structural relaxation, need revision?, J. Phys. Chem. B 109, 17356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Roland, C.M., Casalini, R. (2010). Reorientational Relaxation Time at the Onset of Intermolecular Cooperativity. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_4

Download citation

Publish with us

Policies and ethics