Skip to main content

Theoretical and Experimental Studies on Novel High-Gain Seeded Free-Electron Laser Schemes

  • Book
  • © 2016

Overview

  • Nominated as Excellent Doctoral Dissertation by the Chinese Academy of Sciences in 2014
  • Presents a systematic study of precise electron beam phase space manipulation methods at the optical wavelength scale
  • Proposes a number of novel high-gain free-electron laser schemes for generating intense, fully coherent, short-wavelength radiation
  • Reports how the slice energy spread of the electron beam can be accurately measured by using the coherent harmonic generation technique
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

This dissertation focuses on the study of novel high-gain free-electron laser (FEL) operation schemes with external seed lasers. The technique of manipulating the phase space of the electron beam, which is widely used in novel seeded FEL schemes, is systematically studied. Several novel FEL schemes are proposed for the generation of intense coherent FEL pulses with short wavelength, sub-femtosecond pulse length or multiple carrier frequency properties, which meet the needs of FEL users. Results of experiments are described for the recently proposed FEL schemes such as echo-enabled harmonic generation and cascaded high-gain harmonic generation. New photon/electron beam diagnostic methods are also developed for these experiments and future high-gain FEL facilities.

Authors and Affiliations

  • Shanghai Institute of Applied Physics Shanghai Institute of Applied Physics, Shanghai, China

    Chao Feng

About the author

Dr. Feng received his Ph. D. from Shanghai Institute of Applied Physics in 2013. Currently he is an Assistant Researcher at Shanghai Institute of Applied Physics. His research focuses on the theoretical and experimental studies on high-gain free-electron laser principle, operations schemes, key technologies and advanced beam diagnostic methods.

Awards received by Dr. Feng:
2014 Excellent Doctoral Dissertation of Chinese Academy of Sciences
2013 Chinese Institute of Science Dean's Award
2013 National Scholarship for PhD students

Publications by Dr. Feng:
1. C. Feng et al., New J. Phys. 16, (2014) 043021.
2. C. Feng, et al., Phys. Rev. ST Accel. Beams 17, (2014) 070701.
3. C. Feng, et al., Phys. Rev. ST Accel. Beams 17, (2014) 100702.
4. H. Deng and C. Feng, Phys. Rev. Lett. 111, (2013) 08480.
5. C. Feng , et al.,  Nucl. Instrum. Methods A 712 (2013) 113.
5. C. Feng, et al., Phys. Rev. ST Accel. Beams 16, (2013) 060705.
6. Z.T. Zhao et al., Nat Photon 6, (2012) 360.
8. C. Feng et al., Phys. Rev. ST Accel. Beams 15, (2012) 080703.
9. C. Feng  et al., Chin.  Sci. Bull.  57 (2012) 3423.
10. C. Feng et al., Phys. Rev. ST Accel. Beams 14, (2011) 090701.
11. C. Feng et al., Chin.  Sci. Bull.  55 (2010) 221. 

Bibliographic Information

Publish with us