Skip to main content

Introduction

  • Chapter
  • First Online:
  • 431 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we first give a quick review of the general idea and applications of the accelerator-based light sources. Then a brief introduction of the development history and current status of high-gain FEL facilities around the world are given. After that, we show the evolutions of high-gain FEL schemes either based on SASE or external seeding lasers. The advantages and limits of these schemes have also been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kondratenko AM, Saldin EL (1980) Generating of coherent radiation by a relativistic electron beam in an ondulator. Part Accel 10:207–216

    Google Scholar 

  2. Bonifacio R, Pellegrini C, Narducci LM (1984) Collective instabilities and high-gain regime in a free electron laser. Opt Commun 50(6):373–378

    Article  ADS  Google Scholar 

  3. Bonifacio R, Pierini P, Pellegrini C et al (1994) Slippage, noise and superradiant effects in the UCLA FEL experiment. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 341(1):285–288

    Article  ADS  Google Scholar 

  4. Saldin EL, Schneidmiller EA, Yurkov MV (1999) Numerical simulations of the UCLA experiments on a high gain SASE FEL. In: The sixteenth advanced international committee on future accelerators beam dynamics workshop on nonlinear and collective phenomena in beam physics, vol. 468, no. 1. AIP Publishing, pp. 321–333

    Google Scholar 

  5. Arnold ND, Attig J, Banks G et al (2001) Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 475(1):28–37

    Article  ADS  Google Scholar 

  6. Lewellen JW, Milton SV, Gluskin E et al (2002) Present status and recent results from the APS SASE FEL. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 483(1):40–45

    Article  ADS  Google Scholar 

  7. Ischebeck R, Feldhaus J, Gerth C et al (2003) Study of the transverse coherence at the TTF free electron laser. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 507(1):175–180

    Article  ADS  Google Scholar 

  8. Dohlus M, Flöttmann K, Kozlov OS et al (2004) Start-To-End Simulations of SASE FEL at the TESLA Test Facility, Phase I: comparison with experimental results. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 528(1):448–452

    Article  ADS  Google Scholar 

  9. Ackermann W, Asova G, Ayvazyan V et al (2007) Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat Photonics 1(6):336–342

    Article  ADS  Google Scholar 

  10. Emma P, Akre R, Arthur J et al (2010) First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photonics 4(9):641–647

    Google Scholar 

  11. Allaria E, Appio R, Badano L et al (2012) Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat Photonics 6(10):699–704

    Article  ADS  Google Scholar 

  12. Ishikawa T, Aoyagi H, Asaka T et al (2012) A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat Photonics 6(8):540–544

    Google Scholar 

  13. Schreiber S, Faatz B, Feldhaus J et al (2011) Status of the FEL user facility FLASH. In: 33rd FEL Conference (FEL2011), Shanghai, August 2011, JACoW, p 267

    Google Scholar 

  14. Kang HS, Kim KW, Ko IS (2013) Current status of PAL-XFEL project. In: Proceedings of the 4th International Particle Accelerator Conference (IPAC2013), Shanghai, May 2013, JACoW, p 2074

    Google Scholar 

  15. Altarelli M, Brinkmann R, Chergui M et al (2007) The European x-ray free-electron laser. Technical design report, DESY 2006-097, DESY XFEL Project Group, ISBN 978-3-935702-17-1

    Google Scholar 

  16. Ganter R (2010) SwissFEL-Conceptual design report. Paul Scherrer Institute (PSI), Villigen (Switzerland). Funding organisation: Paul Scherrer Institute (PSI), Villigen (Switzerland)

    Google Scholar 

  17. Zhao ZT, Dai ZM, Zhao XF et al (2004) The Shanghai high-gain harmonic generation DUV free-electron laser. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 528(1):591–594

    Article  ADS  Google Scholar 

  18. Zhao ZT, Chen SY, Yu LH et al (2011) Shanghai soft X-ray free electron laser test facility. In: Proceedings of the 2nd international particle accelerator conference (IPAC2011), San Sebastián, Spain, JACoW, p 3011

    Google Scholar 

  19. Deng HX, Zhang M, Duan G et al (2014) Simulation studies on laser pulse stability for Dalian coherent light source. Chinese Physics C 38(2):028101

    Article  ADS  Google Scholar 

  20. Feldhaus J, Saldin EL, Schneider JR et al (1997) Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Optics Communications 140(4):341–352

    Article  ADS  Google Scholar 

  21. Saldin EL, Schneidmiller EA, Shvyd’ko YV et al (2001) X-ray FEL with a meV bandwidth. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 475(1):357–362

    Article  ADS  Google Scholar 

  22. Geloni G, Kocharyan V, Saldin E (2011) A novel self-seeding scheme for hard X-ray FELs. J Mod Opt 58(16):1391–1403

    Article  ADS  Google Scholar 

  23. Amann J, Berg W, Blank V et al (2012) Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat Photonics 6(10):693–698

    Article  ADS  Google Scholar 

  24. Lambert G, Hara T, Garzella D et al (2008) Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat Phys 4:296–300

    Article  Google Scholar 

  25. Yu LH (1991) Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys Rev A 44(8):5178–5193

    Article  ADS  Google Scholar 

  26. Yu LH, Ben-Zvi I (1997) High-gain harmonic generation of soft X-rays with the “fresh bunch” technique. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 393(1):96–99

    Article  ADS  Google Scholar 

  27. Stupakov G (2009) Using the beam-echo effect for generation of short-wavelength radiation. Phys Rev Lett 102(7):074801

    Article  ADS  Google Scholar 

  28. Xiang D, Stupakov G (2009) Echo-enabled harmonic generation free electron laser. Phys Rev Spec Top—Accel Beams 12(3):030702

    Article  ADS  Google Scholar 

  29. Feng C, Wang D, Zhao ZT (2012) Proceedings of the 3rd international particle accelerator conference (IPAC2012) New Orleans, Louisiana, May 2012, p 1724

    Google Scholar 

  30. Zhao ZT, Wang D, Chen JH et al (2012) First lasing of an echo-enabled harmonic generation free-electron laser. Nat Photonics 6(6):360–363

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, C. (2016). Introduction. In: Theoretical and Experimental Studies on Novel High-Gain Seeded Free-Electron Laser Schemes. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49066-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49066-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49064-8

  • Online ISBN: 978-3-662-49066-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics