Theoretical Studies on Novel High-Gain Seeded FEL Schemes

  • Chao FengEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, the technique of manipulating of electron beam phase space at optical wavelength has been systematically studied. After that, several novel high-gain FEL schemes, including the pre-density modulation (PDM), echo-enabled staged harmonic generation (EESHG), phase-merging enhanced harmonic generation (PEHG), mode-locking of seeded FEL, chirped pulse amplification of coherent harmonic generation (CPA-CHG), have been proposed and studied to improve the performance of SASE and HGHG. Theoretical and simulation studies for seeded FEL schemes with ultra-short seed laser pulses are presented to show the phase error multiplication process in harmonic generation schemes. We found that the slippage effect in the modulator can be used to slow down this multiplication process, which may aid in the production of transform-limited short-wavelength pulses for seeded FELs.


PDM EESHG PEHG Mode-locking CPA-CHG Phase error multiplication Slippage effect 


  1. 1.
    Deng HX, Dai ZM (2010) Ultra-high order harmonic generation via a free electron laser mechanism. Chin Phys C 34(8):1140ADSCrossRefGoogle Scholar
  2. 2.
    McNeil BWJ, Robb GRM, Poole MW (2005) Proceedings of 2005 particle accelerator conference (PAC2005), Knoxville, Tennessee, May 2005, p 1718Google Scholar
  3. 3.
    Allaria E, De Ninno G (2007) Soft-X-ray coherent radiation using a single-cascade free-electron laser. Phys Rev Lett 99(1):014801ADSCrossRefGoogle Scholar
  4. 4.
    Jia Q (2008) Enhanced high-gain harmonic generation for x-ray free-electron laser. Appl Phys Lett 93(14):141102ADSCrossRefGoogle Scholar
  5. 5.
    Xiang D, Stupakov G (2011) Triple modulator–chicane scheme for seeding sub-nanometer x-ray free-electron lasers. New J Phys 13(9):093028CrossRefGoogle Scholar
  6. 6.
    Feng C, Zhao Z (2010) Hard X-ray free-electron laser based on echo-enabled staged harmonic generation scheme. Chin Sci Bull 55(3):221–227CrossRefGoogle Scholar
  7. 7.
    Yu LH (1991) Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys Rev A 44(8):5178–5193ADSCrossRefGoogle Scholar
  8. 8.
    Coisson R, MartiniF D (1982) Free electron coherent relativistic scatterer for U.V. generation. Phys Quant Electron 9:939–960Google Scholar
  9. 9.
    Reiche S (1999) GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl Instr Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 429(1): 243.248Google Scholar
  10. 10.
    Huang Z, Ding Y, Schroeder CB (2012) Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys Rev Lett 109(20):204801ADSCrossRefGoogle Scholar
  11. 11.
    Deng H, Feng C (2013) Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys Rev Lett 111(8):084801ADSCrossRefGoogle Scholar
  12. 12.
    Feng C, Deng H, Wang D, Zhao Z (2014) Phase-merging enhanced harmonic generation free-electron laser. New J Phys 16(4):043021CrossRefGoogle Scholar
  13. 13.
    Feng C, Zhang T, Deng H, Zhao Z (2014) Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers. Phys Rev Spec Top-Accel Beams 17(7):070701ADSCrossRefGoogle Scholar
  14. 14.
    Floettmann K (1999) ASTRA User’s Manual. Astra_dokumentation
  15. 15.
    Borland M (2001) Simple method for particle tracking with coherent synchrotron radiation. Phys Rev Spec Top-Accel Beams 4(7):070701ADSCrossRefGoogle Scholar
  16. 16.
    Johnsson P, López-Martens R, Kazamias S et al (2005) Attosecond electron wave packet dynamics in strong laser fields. Phys Rev Lett 95(1):013001ADSCrossRefGoogle Scholar
  17. 17.
    Remetter T, Johnsson P, Mauritsson J et al (2006) Attosecond electron wave packet interferometry. Nat Phys 2(5):323.326Google Scholar
  18. 18.
    Swoboda M, Fordell T, Klünder K et al (2010) Phase measurement of resonant two-photon ionization in helium. Phys Rev Lett 104(10):103003ADSCrossRefGoogle Scholar
  19. 19.
    Thompson NR, McNeil BWJ (2008) Mode locking in a free-electron laser amplifier. Phys Rev Lett 100(20):203901ADSCrossRefGoogle Scholar
  20. 20.
    Feng C, Chen J, Zhao Z (2012) Generating stable attosecond x-ray pulse trains with a mode-locked seeded free-electron laser. Phys Rev Spec Top-Accel Beams 15(8):080703ADSCrossRefGoogle Scholar
  21. 21.
    Maine P, Strickland D, Bado P et al (1988) Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quantum Electron 24(2):398–403ADSCrossRefGoogle Scholar
  22. 22.
    Wu J, Murphy JB, Emma P et al (2007) Interplay of the chirps and chirped pulse compression in a high-gain seeded free-electron laser. JOSA B 24(3):484–495ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Li Y, Lewellen J, Huang Z et al (2002) Time-resolved phase measurement of a self-amplified free-electron laser. Phys Rev Lett 89(23):234801ADSCrossRefGoogle Scholar
  24. 24.
    Yu LH, Johnson E, Li D et al (1994) Femtosecond free-electron laser by chirped pulse amplification. Phys Rev E 49(5):4480–4486ADSCrossRefGoogle Scholar
  25. 25.
    Yu LH, Shaftan T, Liu D et al (2006) Chirped pulse amplification experiment at 800 nm. In: The 28th International free electron laser conference (FEL 2006), Berlin, Germany, Aug 2006, JACoW, p 194Google Scholar
  26. 26.
    Doyuran A, DiMauro L, Graves W et al (2004) Chirped pulse amplification of HGHG-FEL at DUV-FEL facility at BNL. Nucl Instrum Methods Phys Res, Sect A 528(1):467–470ADSCrossRefGoogle Scholar
  27. 27.
    Feng C, Shen L, Zhang M, Wang D, Zhao Z, Xiang D (2013) Chirped pulse amplification in a seeded free-electron laser for generating high-power ultra-short radiation. Nucl Instrum Methods Phys Res, Sect A 712(113):119ADSGoogle Scholar
  28. 28.
    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge university press, New York, p 486Google Scholar
  29. 29.
    Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40(5):749–759ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Bastiaans MJ (1989) Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems. Optik 82(4):173–181Google Scholar
  31. 31.
    Kohler B, Squier J, DeLong K W et al (1995) Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating. Opt Lett 20(5): 483–485Google Scholar
  32. 32.
    Dorrer C, De Beauvoir B, Le Blanc C et al (1999) Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt Lett 24(22):1644–1646ADSCrossRefGoogle Scholar
  33. 33.
    De Ninno G, Allaria E, Coreno M et al (2008) Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments. Phys Rev Lett 101(5):053902ADSCrossRefGoogle Scholar
  34. 34.
    Xiang D, Wan W (2010) Generating ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. Phys Rev Lett 104(8):084803ADSCrossRefGoogle Scholar
  35. 35.
    Saldin EL, Schneidmiller EA, Yurkov MV (2002) Study of a noise degradation of amplification process in a multistage HGHG FEL. Opt Commun 202(1):169–187ADSCrossRefGoogle Scholar
  36. 36.
    Ratner D, Fry A, Stupakov G et al (2012) Laser phase errors in seeded free electron lasers. Phys Rev Spec Top-Accel Beams 15(3):030702ADSCrossRefGoogle Scholar
  37. 37.
    Allaria E, Appio R, Badano L et al (2012) Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat Photonics 6(10):699–704ADSCrossRefGoogle Scholar
  38. 38.
    Feng C, Deng H, Wang G et al (2013) Slippage effect on energy modulation in seeded free-electron lasers with frequency chirped seed laser pulses. Phys Rev Spec Top-Accel Beams 16(6):060705ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsShanghaiChina

Personalised recommendations