Skip to main content
Birkhäuser

Transport Simulation in Microelectronics

  • Book
  • © 1995

Overview

Part of the book series: Progress in Numerical Simulation for Microelectronics (PNSM, volume 3)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod­ eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad­ dresses three general areas of simulation which frequently arise in semicon­ ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth­ ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi­ cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice.

Authors and Affiliations

  • Siemens AG, München, Germany

    Alfred Kersch

  • Department of Mathematics, University of California, Los Angeles, USA

    William J. Morokoff

Bibliographic Information

Publish with us