Advertisement

Flow in Porous Media

Proceedings of the Oberwolfach Conference, June 21–27, 1992

  • Jim DouglasJr.
  • Ulrich Hornung

Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 114)

Table of contents

  1. Front Matter
    Pages i-v
  2. Jim Douglas Jr.
    Pages 1-3
  3. Michael M. Botz, Steven P. K. Sternberg, Robert A. Greenkorn
    Pages 15-23
  4. J. R. Cannon, Paul DuChateau
    Pages 37-50
  5. Jim Douglas Jr., Jeffrey L. Hensley, Paulo Jorge Paes Leme
    Pages 59-74
  6. Jim Douglas Jr., P. J. Paes Leme, Felipe Pereira, Li-Ming Yeh
    Pages 75-93
  7. Alvaro L. Islas, David O. Lomen
    Pages 95-102
  8. Ralph E. Showalter
    Pages 155-163
  9. Back Matter
    Pages 179-180

About this book

Introduction

Jim Douglas, Jr.' These proceedings reflect some of the thoughts expressed at the Oberwolfach Con­ ference on Porous Media held June 21-27, 1992, organized by Jim Douglas, Jr., Ulrich Hornung, and Cornelius J, van Duijn. Forty-five scientists attended the conference, and about thirty papers were presented. Fourteen manuscripts were submitted for the proceedings and are incorporated in this volume; they cover a number of aspects of flow and transport in porous media. Indeed, there are 223 individual references in the fourteen papers, but fewer than fifteen are cited in more than one paper. The papers appear in alphabetical order (on the basis of the first author). A brief introduction to each paper is given below. Allen and Curran consider a variety of questions related to the simulation of ground­ water contamination. Accurate water velocities are essential for acceptable results, and the authors apply mixed finite elements to the pressure equation to obtain these ve­ locities. Since fine grids are required to resolve heterogenei ties, standard iterative procedures are too slow for practical simulation; the authors introduce a parallelizable, multigrid-based it.erative scheme for the lowest order Raviart-Thomas mixed method. Contaminant transport is approximated through a finite element collocation procedure, and an alternating-direction, modified method of characteristics technique is employed to time-step the simulation. Computational experiments carried out on an nCube 2 computer.

Keywords

Mathematica modeling porous media

Editors and affiliations

  • Jim DouglasJr.
    • 1
  • Ulrich Hornung
    • 2
  1. 1.Dept. of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Fakultät für InformatikUni BwMNeubibergGermany

Bibliographic information