Advertisement

A Massively Parallel Iterative Numerical Algorithm for Immiscible Flow in Naturally Fractured Reservoirs

  • Jim DouglasJr.
  • P. J. Paes Leme
  • Felipe Pereira
  • Li-Ming Yeh
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 114)

Abstract

We propose a new iterative numerical scheme designed for massively parallel processing for an immiscible displacement in a naturally fractured reservoir. The procedure is based on a domain decomposition technique applied to a mixed finite element approximation of the problem; the domain is decomposed into individual elements. Numerical experiments are presented to illustrate its performance on a CM-5 system.

Keywords

Domain Decomposition Matrix Block Domain Decomposition Method Mixed Finite Element Mixed Finite Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold D. N., Brezzi F. Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO, 19:7–32, 1985.Google Scholar
  2. [2]
    Brezzi F., Douglas J. Jr., Durán R., Fortin M. Mixed finite elements for second order elliptic problems in three variables. Numer. Math., 51:237–250, 1987.CrossRefGoogle Scholar
  3. [3]
    Brezzi F., Douglas J. Jr., Fortin M., Marini L. D. Efficient rectangular mixed finite elements in two and three space variables. R.A.LR.O. Modélisation Mathématique et Analyse Numérique, 21:581–604, 1987.Google Scholar
  4. [4]
    Brezzi F., Douglas J. Jr., Marini L. D. Two families of mixed finite elements for second order elliptic problems. Numerische Mathematik, 47:217–235, 1985.CrossRefGoogle Scholar
  5. [5]
    Brezzi F., Douglas J. Jr., Marini L. D. Variable degree mixed methods for second order elliptic problems. Matemática Aplicada e Computational, 4:19–34, 1985.Google Scholar
  6. [6]
    Chen Z., Douglas J. Jr. Prismatic mixed finite elements for second order elliptic problems. Calcolo, 26:135–148, 1989.CrossRefGoogle Scholar
  7. [7]
    Cowsar L. C, Wheeler M. F. Parallel domain decomposition method for mixed finite elements for elliptic partial differential equations. In Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1991. R. Glowinski, Y. Kuznetsov, G. Meurant, J. Périaux, and O. B. Widlund, eds.Google Scholar
  8. [8]
    Després B. Domain decomposition method and the Helmholz problem, pages 44–52. SIAM, Philadelphia, 1991. G. Cohen, L. Halpern, and P. Joly (eds.).Google Scholar
  9. [9]
    Després B. Méthodes de décomposition de domaines pour les problèmes de propagation d’ondes en régime harmonique. PhD thesis, Université Paris IX Dauphine, UER Mathématiques de la Décision, 1991.Google Scholar
  10. [10]
    Després B., Joly P., Roberts J. E. A domain decomposition method for the harmonie Maxwell equations, pages 475–484. Elsevier Science Publishers B. V. (North-Holland), Amsterdam, 1992. R. Beauwens and P. de Groen (eds.).Google Scholar
  11. [11]
    Douglas J., Jr., Arbogast T. Dual porosity models for flow in naturally fractured reservoirs. In Dynamics of Fluids in Hierarchical Porous Formations, pages 177–221, Academic Press, London, 1990. J. H. Cushman, ed.Google Scholar
  12. [12]
    Douglas J. Jr., Arbogast T., Paes Leme P. J., Hensley J. L., Nunes N. P. Immiscible displacement in vertically fractured reservoirs. Transport in Porous Media. To appear, 1993.Google Scholar
  13. [13]
    Douglas J. Jr., Dupont T., Ewing R. E. Incomplete iteration for time-stepping a nonlinear parabolic Galerkin method. SIAM J. Numer. Anal, 16:503–522, 1979.CrossRefGoogle Scholar
  14. [14]
    Douglas J. Jr., Dupont T., Percell P. A time-stepping method for Galerkin approximations for nonlinear parabolic equations. In Numerical Analysis, Dundee 1977, Springer-Verlag, Berlin, 1978.Google Scholar
  15. [15]
    Douglas J. Jr., Hensley J. H., Paes Leme P. J. A study of the effect of inhomogeneities on immiscible flow in naturally fractured reservoirs. In Porous Media, Birkhäuser, Basel, 1993.CrossRefGoogle Scholar
  16. [16]
    Douglas J., Jr., Hensley J. L., Arbogast T. A dual-porosity model for waterflooding in naturally fractured reservoirs. Computer Methods in Applied Mechanics and Engineering, 87:157–174, 1991.CrossRefGoogle Scholar
  17. [17]
    Douglas J. Jr., Paes Leme P. J., Roberts J. E., Wang J. A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numerische Mathematik. To appear, 1993.Google Scholar
  18. [18]
    Ewing R. E., Wang J. Analysis of multilevel decomposition iterative methods for mixed finite element methods. R.A.LR.O. Modélisation Mathématique et Analyse Numérique. Submitted.Google Scholar
  19. [19]
    Ewing R. E., Wang J. Analysis of the Schwarz algorithm for mixed finite element methods. R.A.LR.O. Modélisation Mathématique et Analyse Numérique, 26:739–756, 1992.Google Scholar
  20. [20]
    Praeijs de Veubeke B. X. Displacement and equilibrium models in the finite element method. In Stress Analysis, John Wiley, New York, 1965. O. C. Zienkiewicz and G. Holister (eds.).Google Scholar
  21. [21]
    Praeijs de Veubeke B. X. Stress function approach. International Congress on the Finite Element Method in Structural Mechanics, Bournemouth, 1975.Google Scholar
  22. [22]
    Glimm J., Lindquist B., Pereira F., Peierls R. The fractal hypothesis and anomalous diffusion. Matemática Aplicada e Computational, 11:189–207, 1992.Google Scholar
  23. [23]
    Glimm, J., Lindquist B., Pereira F., Zhang Q. A theory of macrodispersion for the scale up problem. Advances in Water Resources. To appear.Google Scholar
  24. [24]
    Glowinski R., Kinton W., Wheeler M. F. Acceleration of domain decomposition algorithms for mixed finite elements by multi-level methods. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 263–290, SIAM, Philadelphia, 1990. R. Glowinski (ed.).Google Scholar
  25. [25]
    Glowinski R., Wheeler M. F. Domain decomposition and mixed finite element methods for elliptic problems, pages 144–172. SIAM, Philadelphia, 1988. R. Glowinski, G. Golub, G. Meurant, and J. Periaux (eds.).Google Scholar
  26. [26]
    Nedelec J. C. Mixed finite elements in R 3. Numer. Math., 35:315–341, 1980.CrossRefGoogle Scholar
  27. [27]
    Palmer J., Steele G. L. Jr. Connection Machine Model CM-5 system overview. In Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 474–483, IEEE Computer Society Press, Los Alamitos, 1992.CrossRefGoogle Scholar
  28. [28]
    Raviart P. A., Thomas J. M. A mixed finite element method for second order elliptic problems. In Mathematical Aspects of the Finite Element Method, pages 292–315, Springer-Verlag, Berlin and New York, 1977. I. Galligani and E. Magenes, eds.CrossRefGoogle Scholar
  29. [29]
    Thomas J. M. Sur Vanalyse numérique des methodes d’éléments finis hybrides et mixtes. PhD thesis, Université Pierre-et-Marie Curie, Paris, 1977.Google Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  • Jim DouglasJr.
    • 1
  • P. J. Paes Leme
    • 2
  • Felipe Pereira
    • 1
  • Li-Ming Yeh
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Institute-PolitécnicoUniversidade do Estado do Rio de JaneiroNova FriburgoBrazil

Personalised recommendations