Skip to main content

A Study of the Effect of Inhomogeneities on Immiscible Flow in Naturally Fractured Reservoirs

  • Chapter
Flow in Porous Media

Abstract

The so-called medium block model for two-phase, immiscible, incompressible flow in a naturally-fractured petroleum reservoir is extended to admit inhomogeneous and non-periodic physical properties in both fractures and matrix blocks. In particular, a number of block types is allowed over each point in the reservoir, along with inhomogeneous physical properties. Numerical studies are performed to analyze the dependence of the flow on these properties for both vertical cross-sections and five-spot injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbogast T. The double porosity model for single phase flow in naturally fractured reservoirs. In Numerical Simulation in Oil Recovery, The IMA Volumes in Mathematics and its Applications 11, pages 23–45. Springer-Verlag, Berlin and New York, 1988. M. F. Wheeler, ed.

    Chapter  Google Scholar 

  2. Arbogast T., Douglas J., Hornung U. Modeling of naturally fractured petroleum reservoirs by formal homogenization techniques. In Frontiers in Pure and Applied Mathematics, pages 1–19. Elsevier, Amsterdam, 1991. R. Dautray, ed.

    Google Scholar 

  3. Aziz K. and Settari T. Petroleum Reservoir Simulation. Applied Science Publishers, London, 1979.

    Google Scholar 

  4. Barenblatt G. I., Zheltov I. R, Kochina I. N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math, and Mech., 24:1286–1303, 1960.

    Article  Google Scholar 

  5. Chavent G., Jaffré J. Mathematical Models and Finite Elements for Reservoir Simulation. North-Holland, Amsterdam, 1986.

    Google Scholar 

  6. de Swaan A. Theory of waterflooding in fractured reservoirs. Soc. Petroleum Engr. J., 18:117–122, 1978.

    Google Scholar 

  7. Douglas J., Jr., Arbogast T. Dual porosity models for flow in naturally fractured reservoirs. In Dynamics of Fluids in Hierarchical Porous Formations, pages 177–221. Academic Press, London, 1990. J. H. Cushman, ed.

    Google Scholar 

  8. Douglas J., Jr., Arbogast T., Paes Leme P. J., Hensley J. L., Nunes N. P. Immiscible displacement in vertically fractured reservoirs. Transport in Porous Media. To appear, 1993.

    Google Scholar 

  9. Douglas J., Jr., Hensley J. L., Arbogast T. A dual-porosity model for waterflooding in naturally fractured reservoirs. Computer Methods in Applied Mechanics and Engineering, 87:157–174, 1991.

    Article  Google Scholar 

  10. Hornung U. Applications of the homogenization method to flow and transport through porous media. In Flow and Transport in Porous Media, Singapore. Summer School, Beijing 1988, World Scientific. Xiao Shutie, ed., to appear.

    Google Scholar 

  11. Hornung U. Miscible displacement in porous media influenced by mobile and immobile water. Rocky Mtn. Jour. Math., 21:645–669, 1991. Corr. pages 1153–1158.

    Article  Google Scholar 

  12. Hornung IL, Jäger, W. Homogenization of reactive transport through porous media. In EQUADIFF 1991, Singapore. World Scientific Publishing. C. Perelló, ed., submitted 1992.

    Google Scholar 

  13. Hornung IL, Jäger W. A model for chemical reactions in porous media. In Complex Chemical Reaction Systems. Mathematical Modeling and Simulation, volume 47 of Chemical Physics, pages 318–334. Springer, Berlin, 1987. J. Warnatz and W. Jäger, eds.

    Chapter  Google Scholar 

  14. Hornung U., Jäger W. Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Diff. Equations, 92:199–225, 1991.

    Article  Google Scholar 

  15. Hornung U., Showalter R. E. Diffusion models for fractured media. Jour. Math. Anal. Appl, 147:69–80, 1990.

    Article  Google Scholar 

  16. Peaceman D. W. Fundamentals of Numerical Reservoir Simulation. Elsevier, New York, 1977.

    Google Scholar 

  17. Showalter R. E. Distributed microstructure models of porous media. This volume.

    Google Scholar 

  18. Vogt Ch. A homogenization theorem leading to a Volterra integro-differential equation for permeation chromotography. Preprint #155, Sonderfachbereich 123, 1982.

    Google Scholar 

  19. Warren J. E., Root P. J. The behavior of naturally fractured reservoirs. Soc. Petr. Eng. J., 3:245–255, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Douglas, J., Hensley, J.L., Paes Leme, P.J. (1993). A Study of the Effect of Inhomogeneities on Immiscible Flow in Naturally Fractured Reservoirs. In: Douglas, J., Hornung, U. (eds) Flow in Porous Media. ISNM International Series of Numerical Mathematics, vol 114. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8564-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8564-5_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9682-5

  • Online ISBN: 978-3-0348-8564-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics