1 Introduction

The following second-order p-Laplacian boundary value problem will be considered in this work:

$$ \left \{ \textstyle\begin{array}{l} (\varphi_{p}(u'(t)))' + g(t, u(t),u'(t))=0,\quad t \in(0,+\infty), \\ \varphi_{p}(u'(0)) = \int_{0}^{+\infty } v(t)\varphi_{p}(u'(t))\,dt,\qquad \varphi_{p}(u'(+\infty ))= \sum_{j=1}^{m} \beta_{j} \int_{0} ^{\eta_{j}} \varphi_{p}(u'(t))\,dt, \end{array}\displaystyle \right . $$
(1.1)

where \(g:[0,+\infty) \times\mathbb{R}^{2} \to\mathbb{R}\) is an \(L^{1}\)-Carathéodory function, \(0< \eta_{1}<\eta_{2} < \cdots\leq\eta _{m} < +\infty\), \(\beta_{j} \in\mathbb{R}\), \(j=1,2, \ldots, m\), \(v \in L^{1}[0,+\infty )\), \(v(t) >0\) on \([0,+\infty )\), and

$$\varphi_{p} (s) = \vert s \vert ^{p-2}s,\quad p \geq2. $$

There are many real life applications of boundary value problems with integral and multi-point boundary conditions on an unbounded domain, for instance, in the study of physical phenomena such as the study of an unsteady flow of fluid through a semi-infinite porous medium and radially symmetric solutions of nonlinear elliptic equations. They also arise in plasma physics and in the study of drain flows; see [13].

Boundary value problems are said to be at resonance if the solution of the corresponding homogeneous boundary value problem is non-trivial. Many authors in the literature have considered resonant problems. López-Somoza and Minhós [4] obtained existence results for a resonant multi-point second-order boundary value problem on the half-line, Capitanelli, Fragapane and vivaldi [5] addressed regularity results for p-Laplacians in pre-fractal domains, while Jiang and Kosmatov [6] considered resonant p-Laplacian problems with functional boundary conditions. For other work on resonant problems without p-Laplacian operator, see [710], while for problems with the p-Laplacian operator, see [1116]. In [17], Jiang considered the following p-Laplacian operator:

$$ \left \{ \textstyle\begin{array}{l} (\varphi_{p}(u'))' + f(t,u,u') =0, \quad0< t< +\infty ,\\ u(0) =0, \qquad\varphi_{p}(u(+\infty ))=\sum_{i=1}^{n} \alpha_{i} \varphi _{p}(u'(\xi_{i})), \end{array}\displaystyle \right . $$

where \(\alpha_{i} >0\), \(i=1,2,\dots,n\), \(\sum_{i=1}^{n} \alpha_{i}=1\).

To the best of our knowledge p-Laplacian problems with two dimensional kernel on the half-line have not received much attention in the literature.

We will give the required lemmas, theorem and definitions in Sect. 2, Sect. 3 will be dedicated to stating and proving condition for existence of solutions, while an example will be given in Sect. 4 to validate the result obtained.

2 Preliminaries

In this section, we will give some definitions and lemmas that will be used in this work.

Definition 2.1

([11])

A map \(w:[0,+\infty) \times\mathbb{R}^{2} \to\mathbb{R}\) is \(L^{1}[0,+\infty )\)-Carathéodory, if the following conditions are satisfied:

  1. (i)

    for each \((d,e) \in\mathbb{R}^{2}\), the mapping \(t \to w(t,d,e)\) is Lebesgue measurable;

  2. (ii)

    for a.e. \(t\in[0,\infty)\), the mapping \((d,e) \to w(t,d,e)\) is continuous on \(\mathbb{R}^{2}\);

  3. (iii)

    for each \(k>0\), there exists \(\varphi_{k}(t) \in L_{1}[0,+\infty)\) such that, for a.e. \(t \in[0,\infty)\) and every \((d,e) \in[-k,k]\), we have

    $$\bigl\vert w(t,d,e) \bigr\vert \leq\varphi_{k}(t). $$

Definition 2.2

([18])

Let \((U, \Vert\cdot\Vert_{U})\) and \((Z, \Vert\cdot\Vert_{Z})\) be two Banach spaces. The continuous operator \(M:U \cap \operatorname {dom}M \to Z\), is quasi-linear if the following hold:

  1. (i)

    \(\operatorname {Im}M = M(U\cap \operatorname {dom}M)\) is a closed subset of Z;

  2. (ii)

    \(\ker M = \{ u \in U \cap \operatorname {dom}M :Mu=0\}\) is linearly homeomorphic to \(\mathbb{R}^{n}\), \(n < +\infty \).

Definition 2.3

([19])

Let U be a Banach space and \(U_{1} \subset U\) a subspace. Let \(P, Q:U \to U_{1}\) be operators, then P is a projector if

  1. (i)

    \(P^{2} =P\);

  2. (ii)

    \(P(\lambda_{1}u_{1} + \lambda_{2}u_{2})=\lambda_{1}Pu_{1} + \lambda _{2}Pu_{2}\) where \(u_{1}, u_{2} \in U\), \(\lambda_{1}, \lambda_{2} \in\mathbb{R}\),

and Q is a semi-projector if

  1. (i)

    \(Q^{2} = Q\);

  2. (ii)

    \(Q(\lambda u) = \lambda Qu\) where \(u \in U\), \(\lambda\in \mathbb{R}\).

Let \(U_{1} = \ker M\) and \(U_{2}\) be the complement space of \(U_{1}\) in U, then \(U=U_{1} \oplus U_{2}\). Similarly, if \(Z_{1}\) is a subspace of Z and \(Z_{2}\) is the complement space of \(Z_{1}\) in Z, then \(Z = Z_{1} \oplus Z_{2}\). Let \(P: U \to U_{1}\) be a projector, \(Q:Z \to Z_{1}\) be a semi-projector and \(\varOmega\subset U\) an open bounded set with \(\theta\in\varOmega\) the origin. Also, let \(N_{1}\) be denoted by N, let \(N_{\lambda}: \overline{\varOmega} \to Z\), where \(\lambda\in [0,1]\) is a continuous operator and \(\varSigma_{\lambda} =\{ u \in \overline{\varOmega}:Mu=N_{\lambda}u \}\).

Definition 2.4

([20])

Let U be the space of all continuous and bounded vector-valued functions on \([0,+\infty )\) and \(X \subset U\). Then X is said to be relatively compact if the following statements hold:

  1. (i)

    X is bounded in U;

  2. (ii)

    all functions from X are equicontinuous on any compact subinterval of \([0,+\infty )\);

  3. (iii)

    all functions from X are equiconvergent at ∞, i.e. \(\forall \epsilon>0\), ∃ a \(T = T(\epsilon)\) such that \(\Vert A(t) - A(+\infty )\Vert_{R^{n}}<\epsilon\)\(\forall t >T\) and \(A \in X\).

Definition 2.5

([18])

Let \(N_{\lambda}: \overline{\varOmega} \to Z\), \(\lambda\in[0,1]\) be a continuous operator. The operator \(N_{\lambda}\) is said to be M-compact in Ω̅ if there exist a vector subspace \(Z_{1} \in Z\) such that \(\dim Z_{1} = \dim U_{1}\) and a compact and continuous operator \(R:\overline{\varOmega} \times[0,1] \to U_{2}\) such that, for \(\lambda\in[0,1]\), the following holds:

  1. (i)

    \((I - Q)N_{\lambda}(\overline{\varOmega}) \subset \operatorname {Im}M \subset(I-B)Z\),

  2. (ii)

    \(QN_{\lambda}u=0 \Leftrightarrow QNu=0\), \(\lambda\in(0,1)\),

  3. (iii)

    \(R(\cdot,u)\) is the zero operator and \(R(\cdot, \lambda )|_{\varSigma_{\lambda}}=(I-P)|_{\varSigma_{\lambda}}\),

  4. (iv)

    \(M[P+R(\cdot, \lambda)]=(I-Q)N_{\lambda}\).

Lemma 2.1

([19])

The following are properties of the function\(\varphi_{p} : \mathbb{R} \to\mathbb{R}\):

  1. (i)

    It is continuous, monotonically increasing and invertible. Its inverse\(\varphi_{p} ^{-1} =\varphi_{q}\), where\(q >1\)and satisfies\(\frac{1}{p}+\frac{1}{q}=1\).

  2. (ii)

    For any\(x, y >0\),

    1. (a)

      \(\varphi_{p} (x +y) \leq\varphi_{p} (x) + \varphi_{p}(y)\), if\(1 < p <2\),

    2. (b)

      \(\varphi_{p}(x+y) \leq2^{p-2}(\varphi_{p}(x) + \varphi _{p}(y))\), if\(p \geq2\).

Theorem 2.1

([18])

Let\((U, \Vert\cdot\Vert_{U})\)and\((Z, \Vert\cdot\Vert_{Z})\)be two Banach spaces and\(\varOmega\subset U\)an open and bounded set. If the following holds:

(\(A_{1}\)):

The operator\(M: U \cap \operatorname {dom}M \to Z\)is a quasi-linear,

(\(A_{2}\)):

the operator\(N_{\lambda}:\overline{\varOmega} \to Z\), \(\lambda\in[0,1]\)isM-compact,

(\(A_{3}\)):

\(Mu \neq N _{\lambda}u\), for\(\lambda\in(0,1)\), \(u \in\partial\varOmega\cap \operatorname {dom}M\),

(\(A_{4}\)):

\(\deg\{JQN, \varOmega\cap\ker M,0 \} \neq0\), where the operator\(J:Z_{1} \to U_{1}\)is a homeomorphism with\(J(\theta)=\theta \)and deg is the Brouwer degree,

then the equation\(Mu = Nu\)has at least one solution inΩ̅.

Let

$$\begin{aligned} U = \Bigl\{ u \in C^{2}[0,+\infty): u, \varphi_{p} \bigl(u'\bigr) \in \mathit{AC}[0,+\infty ), \lim_{t \to +\infty }e^{-t} \bigl\vert u^{(i)}(t) \bigr\vert \text{ exist, } i=0,1 \Bigr\} , \end{aligned}$$

with the norm \(\Vert u \Vert= \max\{\Vert u \Vert_{\infty}, \Vert u' \Vert_{\infty}\}\) defined on U where \(\Vert u \Vert_{\infty} =\sup_{t \in[0,+\infty )}e^{-t}|u|\). The space \((U, \Vert\cdot\Vert)\) by a standard argument is a Banach Space.

Let \(Z = L^{1}[0,+\infty )\) with the norm \(\Vert w \Vert_{L^{1}} = \int_{0} ^{+\infty }|w(v)|\,dv\). Define M as a continuous operator such that \(M:\operatorname {dom}M \subset U \to Z\) where

$$\begin{aligned} \begin{aligned} \operatorname {dom}M &= \Biggl\{ u \in U: \bigl(\varphi_{p} \bigl(u' \bigr)\bigr)' \in L^{1}[0,+\infty ), \varphi _{p} \bigl(u'(0)\bigr)= \int_{0}^{+\infty }v(t)\varphi_{p} \bigl(u'(t)\bigr)\,dt, \\ &\quad \lim_{t \to +\infty } \bigl(\varphi_{p} \bigl(u'(t)\bigr)\bigr)= \sum_{j=1}^{m} \beta_{j} \int _{0} ^{\eta_{j}} \varphi_{p} \bigl(u'(t)\bigr)\,dt \Biggr\} \end{aligned} \end{aligned}$$

and \(Mu = (\varphi_{p}(u'(t)))'\). We will define the operator \(N_{\lambda}u : \overline{\varOmega} \to Z\) by

$$N_{\lambda}u = -\lambda g\bigl(t, u(t),u'(t)\bigr), \quad \lambda\in[0,1], t \in[0,+\infty ), $$

where \(\varOmega\subset U\) is an open and bounded set. Then the boundary value problem (1.1) in abstract form is \(Mu=Nu\).

Throughout the paper we will assume the hypotheses:

(\(\phi_{1}\)):

\(\sum_{j=1}^{m} \beta_{j} \eta_{j} = \int_{0}^{+\infty }v(t)\, dt=1\);

(\(\phi_{2}\)):
$$C = \left| \textstyle\begin{array}{c@{\quad}c} Q_{1}e^{-t} & Q_{2}e^{-t} \\ Q_{1}te^{-t} & Q_{2}te^{-t} \end{array}\displaystyle \right| := \left| \textstyle\begin{array}{c@{\quad}c}c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}\displaystyle \right| =c_{11}\cdot c_{22} - c_{12} \cdot c_{21} \neq0,$$

where

$$Q_{1}w =\int_{0}^{+\infty }v(t) \int_{0}^{t} w(s)\,ds\,dt,$$

and

$$Q_{2}w=\sum_{j=1}^{m} \beta_{j}\int_{0}^{\eta_{j}}\int_{t}^{+\infty }w(s)\,ds\,dt.$$

It is obvious that \(\ker M = \{u \in \operatorname {dom}M:u=a +bt: a, b \in\mathbb {R}, t \in[0,+\infty )\}\) and \(\operatorname {Im}M = \{w:w \in Z, Q_{1}w = Q_{2}w=0\}\).

Clearly, \(\ker M=2\) is linearly homeomorphic to \(\mathbb{R}^{2}\) and \(\operatorname {Im}M \subset Z\) is closed, hence, the operator \(M:\operatorname {dom}M \subset U \to Z\) is quasi-linear.

We next define the projector \(P:U \to U_{1}\) as

$$ Pu(t)=u(0) + u'(0)t, \quad u \in U, $$
(2.1)

and the operators \(\Delta_{1}, \Delta_{2} : Z \to Z_{1}\) as

$$\Delta_{1}w=\frac{1}{C}(\delta_{11}Q_{1}w + \delta_{12}Q_{2}w)e^{-t},$$

and

$$\Delta_{2}w=\frac{1}{C}(\delta_{21}Q_{1}w + \delta _{22}Q_{2}w)e^{-t},$$

where \(\delta_{ij}\) is the co-factor of \(c_{ij}\), \(i,j=1,2\). Then the operator \(Q: Z \to Z_{1}\) will be defined as

$$ Qw = (\Delta_{1}w) + (\Delta_{2}w) \cdot t $$
(2.2)

where \(Z_{1}\) is the complement space of ImM in Z. Then the operator \(Q: Z \to Z_{1}\) can easily be shown to be a semi-projector.

Let the operator \(R:U \times[0,1] \to U_{2}\) be defined by

$$\begin{aligned} R(u,\lambda) (t)&= \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr) - \int _{0}^{\tau}\lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) - QNu(s)\bigr)\,ds \biggr)\,d\tau- u'(0)t, \end{aligned}$$

where \(U_{2}\) is the complement space of kerM in U.

Lemma 2.2

Ifgis a\(L^{1}[0,+\infty )\)-Carathéodory function, then\(R:U \times[0,1] \to U_{2}\)isM-compact.

Proof

Let the set \(\varOmega\subset U\) be nonempty, open and bounded, then, for \(u \in\overline{\varOmega}\), there exists a constant \(k >0\) such that \(\Vert u \Vert< k\). Since g is an \(L^{1}[0,+\infty )\)-Carathéodory function, there exists \(\psi_{k} \in L^{1}[0,+\infty )\) such that, for a.e. \(t \in[0,+\infty )\) and \(\lambda\in[0,1]\), we have

$$\begin{aligned} \Vert N_{\lambda}u \Vert _{L^{1}}+ \Vert QN _{\lambda }u \Vert _{L^{1}}&= \int_{0}^{+\infty } \bigl\vert N_{\lambda}u(v) \bigr\vert \,dv + \int_{0}^{+\infty } \bigl\vert QN _{\lambda}u(v) \bigr\vert \,dv \\ & \leq \Vert \psi_{k} \Vert _{L^{1}}+ \Vert QNu \Vert _{L^{1}}. \end{aligned}$$

Now for any \(u \in\overline{\varOmega}\), \(\lambda\in[0,1]\), we have

$$\begin{aligned} \begin{aligned} [b]\bigl\Vert R(u,\lambda) \bigr\Vert _{\infty} &= \sup_{t \in[0,+\infty )}e^{-t} \bigl\vert R(u,\lambda) (t) \bigr\vert \leq\frac{1}{e} \varphi_{q} \bigl(\varphi_{p}(k) + \Vert Nu_{\lambda} \Vert _{L^{1}} + \Vert QN_{\lambda}u \Vert _{L^{1}}\bigr)+k \\ &\leq\varphi_{q} \bigl( \varphi_{p}(k)+ \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) +k< +\infty \end{aligned} \end{aligned}$$
(2.3)

and

$$\begin{aligned} \begin{aligned}[b] \bigl\Vert R'(u, \lambda) \bigr\Vert _{\infty} &= \sup_{t \in[0,+\infty )}e^{-t} \bigl\vert R'(u,\lambda) (t) \bigr\vert \\ &\leq\varphi_{q} \bigl(\varphi_{p}(k)+ \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr)+k < +\infty . \end{aligned} \end{aligned}$$
(2.4)

Therefore it follows from (2.3) and (2.4) that \(R(u, \lambda)\overline{\varOmega}\) is uniformly bounded.

Next we show that \(R(u, \lambda)\overline{\varOmega}\) is equicontinuous in a compact set. Let \(u \in\overline{\varOmega}\), \(\lambda\in[0,1]\). For any \(T \in[0,+\infty )\), with \(t_{1}, t_{2} \in [0,T]\) where \(t_{1} < t_{2}\), we have

$$\begin{aligned} &\bigl\vert e^{t_{2}}R(u, \lambda) (t_{2})-e^{t_{1}}R(u,\lambda) (t_{1}) \bigr\vert \\ &\quad= \biggl\vert e^{t_{2}} \int_{0}^{t_{2}} \varphi_{q} \biggl( \varphi _{p}\bigl(u'(0)\bigr)- \int_{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr)\,d \tau-u'(0)t_{2}e^{-t_{2}} \\ &\qquad - e^{-t_{1}} \int_{0}^{-t_{1}} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int _{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) -QNu(s)\bigr)\,ds \biggr)\,d\tau+ u'(0)t_{1}e^{t_{1}} \biggr\vert \\ &\quad\leq \bigl\vert e^{t_{2}}-e^{-t_{1}} \bigr\vert \int_{0}^{t_{1}} \varphi_{q} \biggl( \varphi _{p}\bigl( \bigl\vert u'(0) \bigr\vert \bigr)+ \int_{0}^{\tau} \lambda \bigl\vert g \bigl(s,u(s),u'(s)\bigr)-QNu(s) \bigr\vert \,ds \biggr)\,d\tau \\ &\qquad + e^{-t_{2}} \int_{t_{1}}^{t_{2}} \varphi_{q} \biggl( \varphi _{p}\bigl( \bigl\vert u'(0) \bigr\vert \bigr)+ \int_{0}^{\tau} \lambda \bigl\vert g \bigl(s,u(s),u'(s)\bigr)-QNu(s) \bigr\vert \,ds \biggr)\,d\tau \\ &\qquad + \bigl\vert t_{1}e^{-t_{1}}-t_{2}e^{-t_{2}} \bigr\vert \bigl\vert u'(0) \bigr\vert \\ &\quad\leq\bigl(e^{t_{2}}-e^{-t_{1}}\bigr)\varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr)t_{1} \\ &\qquad+ e^{-t_{2}}\varphi_{q} \bigl( \varphi _{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) (t_{2} -t_{1}) + \bigl\vert t_{1}e^{-t_{1}}-t_{2}e^{-t_{2}} \bigr\vert r \\&\quad\to 0, \quad\text{as } t_{1} \to t_{2}, \end{aligned}$$
(2.5)

and

$$\begin{aligned} \begin{aligned}[b] &\bigl\vert e^{-t_{2}}R'(u, \lambda) (t_{2})-e^{-t_{1}}R'(u,\lambda) (t_{1}) \bigr\vert \\ &\quad= \biggl\vert e^{t_{2}}\varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int_{0}^{t_{2}} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr) -u'(0)e^{-t_{2}} \\ & \qquad- e^{-t_{1}}\varphi_{q} \biggl( \varphi_{p} \bigl(u'(0)\bigr)- \int_{0}^{t_{1}} \lambda \bigl(g \bigl(s,u(s),u'(s)\bigr) -QNu(s)\bigr)\,ds \biggr) + u'(0)e^{-t_{1}} \biggr\vert \\ &\quad\leq\bigl(e^{t_{2}}-e^{-t_{1}}\bigr)\varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) + \bigl(e^{-t_{1}}-e^{-t_{2}}\bigr)k \\ &\quad\to0, \quad\text{as } t_{1} \to t_{2}. \end{aligned} \end{aligned}$$
(2.6)

Thus, (2.5) and (2.6) show that \(R(u,\lambda )\overline{\varOmega}\) is equicontinuous on \([0,T]\).

We will now prove that \(R(u,\lambda)\overline{\varOmega}\) is equiconvergent at ∞. Since \(\lim_{t \to +\infty }e^{-t}=0\),

$$\begin{aligned} \lim_{t \to +\infty } e^{-t}R(u,\lambda) (t)= \lim _{t \to +\infty } e^{-t}R'(u,\lambda) (t)=0. \end{aligned}$$

Hence,

$$\begin{aligned} \begin{aligned}[b] &\Bigl\vert e^{-t}R(u, \lambda) (t)-\lim_{t \to +\infty }e^{-t}R(u,\lambda) (t) \Bigr\vert \\ &\quad= \biggl\vert e^{-t} \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr) - \int _{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr)\,d\tau -te^{-t}u'(0) -0 \biggr\vert \hspace{-24pt} \\ &\quad\leq te^{-t} \varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) + kte^{-t} \\&\quad\to0, \quad\text{uniformly as } t \to +\infty , \end{aligned} \end{aligned}$$
(2.7)

and

$$\begin{aligned} \begin{aligned}[b] &\Bigl\vert e^{-t}R'(u, \lambda) (t)-\lim_{t \to +\infty }e^{-t}R'(u, \lambda) (t) \Bigr\vert \\ &\quad= \biggl\vert e^{-t}\varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr) - \int_{0}^{t} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr) -e^{-t}u'(0) - 0 \biggr\vert \\ &\quad\leq e^{-t} \varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) + ke^{-t} \\&\quad\to0, \quad\text{uniformly as } t \to +\infty . \end{aligned} \end{aligned}$$
(2.8)

Therefore \(R(u,\lambda)\overline{\varOmega}\) is equiconvergent at +∞. It then follows from Definition 2.4 that \(R(u,\lambda)\) is compact. □

Lemma 2.3

The operator\(N_{\lambda}\)isM-compact.

Proof

Since Q is a semi-projector, \(Q(I-Q)N_{\lambda}(\overline{\varOmega })=0\). Hence, \((I-Q)N_{\lambda}(\overline{\varOmega})\subset\ker Q = \operatorname {Im}M\). Conversely, let \(w \in \operatorname {Im}M\), then \(w=w -Qw = (I-Q)w \in (I-Q)Z\). Hence, condition (i) of definition (2.5) is satisfied. It can easily be shown that condition (ii) of Definition 2.5 holds.

Let \(u \in\varSigma_{\lambda}=\{u \in\overline{\varOmega}:Mu = N_{\lambda}u\}\), then \(N_{\lambda}u \in \operatorname {Im}M\). Hence, \(QN_{\lambda }u=0\) and \(R(u,0)(t)=0\). From \((\varphi_{p}(u'(t)))' + g(t, u(t),u'(t))=0\), \(t \in(0,+\infty)\), we have

$$\begin{aligned} R(u,\lambda) (t)&= \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int _{0}^{\tau} \lambda g \bigl(s,u(s),u'(s) \bigr)\,ds \biggr)\,d\tau- u'(0)t \\ &= \int_{0}^{t} \varphi_{q} \bigl( \varphi_{p}\bigl(u'(0)\bigr)+ \varphi_{p} \bigl(u'(\tau )\bigr)-\varphi_{p}\bigl(u'(0) \bigr) \bigr)\,d\tau- u'(0)t \\ &= u(t) - u(0)-u'(0)t=u(t)-Pu(t)=\bigl[(I-P)u\bigr](t). \end{aligned}$$

Therefore, condition (iii) of definition (2.5) holds.

Let \(u \in\overline{\varOmega}\). Since \(Mu = (\varphi_{p}(u'(t)))'\) we have

$$\begin{aligned} M\bigl[Pu +R(u,\lambda)\bigr](t)&= \big(\varphi_{p}\bigl(\bigl[Pu + R(u,\lambda)\bigr]\big)'(t)\bigr)' \\ &= \biggl(\varphi_{p} \biggl[u(0)+u'(0)t + \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int_{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) \\ &\quad - QN(s)\bigr)\,ds \biggr) \,d\tau-u'(0)t \biggr]' \biggr)' \\ &= \biggl(\varphi_{p}\bigl(u'(0)\bigr)- \int_{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) - QN(s)\bigr)\,ds \biggr)'=(I-Q)N_{\lambda}(t), \end{aligned}$$

that is, condition (iv) of definition (2.5) holds. Hence, \(N_{\lambda}\) is M-compact in Ω̅. □

3 Existence result

In this section, the conditions for existence of solutions for boundary value problem (1.1) will be stated and proved.

Theorem 3.1

Assumegis a\(L^{[}0,+\infty )\)-Carathéodory function and the following hypotheses hold:

(\(H_{1}\)):

there exist functions\(x_{1}(t), x_{2}(t), x_{3}(t) \in L^{1}[0,+\infty )\)such that, for a.e. \(t \in[0,+\infty )\),

$$ \bigl\vert g\bigl(t,u,u'\bigr) \bigr\vert \leq e^{-t}\bigl(x_{1}(t) \vert u \vert ^{p-1} + x_{2}(t) \bigl\vert u' \bigr\vert ^{p-1}\bigr) + x_{3}(t), $$
(3.1)
(\(H_{2}\)):

for\(u \in \operatorname {dom}M\)there exists a constant\(A_{0} >0\), such that, if\(|u(t)|>A_{0}\)for\(t \in[0,+\infty )\)or\(|u'(t)|>A_{0}\)for\(t \in[0,+\infty ]\), then either

$$ Q_{1}Nu(t) \neq0 \quad\textit{or} \quad Q_{2}Nu(t) \neq0, \quad t \in [0,+\infty ), $$
(3.2)
(\(H_{3}\)):

there exists a constant\(l>0\)such that, for\(|a| >l\)or\(|b|>l\)either

$$ Q_{1}N(a +bt) + Q_{2}N(a +bt) < 0, \quad t \in[0,+\infty ), $$
(3.3)

or

$$ Q_{1}N(a +bt) + Q_{2}N(a +bt) >0, \quad t \in[0,+\infty ), $$
(3.4)

where\(a, b \in\mathbb{R}\), \(|a| + |b| > l\)and\(t \in[0,+\infty )\).

Then the boundary value problem (1.1) has at least one solution, provided

$$2^{2q-4}\bigl( \Vert x_{2} \Vert _{L^{1}} + 2^{q-2} \Vert x_{1} \Vert _{L^{1}}\bigr) < 1, \quad\textit{for } 1 < p \leq2, $$

or

$$\varphi_{q}\bigl( \Vert x_{1} \Vert _{L^{1}} + \Vert x_{2} \Vert _{L^{1}}\bigr) < 1, \quad \textit{for } p>2. $$

The following lemmas are also needed to prove our main result.

Lemma 3.1

The set\(\varOmega_{1} = \{ u \in \operatorname {dom}M :Mu = N_{\lambda}u \textit{ for some } \lambda\in(0,1)\}\)is bounded.

Proof

Let \(u \in\varOmega_{1}\) then \(N_{\lambda}u \in \operatorname {Im}M= \ker Q\). Hence, \(QN_{\lambda}u = 0\) and \(QNu=0\). It follows from \(H_{2}\) that there exist \(t_{0}, t_{1} \in[0,+\infty )\), such that \(|u(t_{0})| \leq A_{0}\) and \(|u'(t_{1})| \leq A_{0}\). From \(u(t)=u(t_{0}) + \int_{t_{0}}^{t}u'(v)\,dv\), we have

$$\begin{aligned} \bigl\vert u(t) \bigr\vert = \biggl\vert u(t_{0}) - \int_{t_{0}}^{t}u'(s)\,ds \biggr\vert \leq A_{0} + \vert t-t_{0} \vert \bigl\Vert u' \bigr\Vert _{\infty}. \end{aligned}$$

Hence,

$$ \Vert u \Vert _{\infty} = \sup_{t \to\infty}e^{-t} \bigl\vert u(t) \bigr\vert \leq A_{0} + \bigl\Vert u' \bigr\Vert _{\infty}. $$
(3.5)

Also, from \(Mu = N_{\lambda}u\), we get

$$\varphi_{p}\bigl(u'(t)\bigr)=- \int_{t_{1}}^{t} \lambda g\bigl(s,u(s),u'(s) \bigr)\,ds + \varphi _{p}\bigl(u(t_{1})\bigr). $$

In view of (3.1), we have

$$\begin{aligned} \begin{aligned}[b] \bigl\vert \bigl(u'(t) \bigr) \bigr\vert &\leq\varphi_{q} \biggl(\varphi_{p}(A_{0})+ \int_{0}^{+\infty } \bigl(x_{1}(t) \bigl\vert \varphi_{p}\bigl(u(t)\bigr) \bigr\vert + x_{2}(t) \bigl\vert \varphi_{p}\bigl(u' \bigr) \bigr\vert + x_{3}(t)\bigr)\,dt \biggr) \\ &\leq\varphi_{q} \bigl(\varphi_{p}(A_{0})+ \Vert x_{1} \Vert _{L^{1}}\varphi _{p} \bigl( \Vert u \Vert _{\infty}\bigr) + \Vert x_{2} \Vert _{L^{1}}\varphi_{p}\bigl( \bigl\Vert u' \bigr\Vert _{\infty}\bigr) + \Vert x_{3} \Vert _{L^{1}} \bigr) \\ &\leq\varphi_{q} \bigl(\varphi_{p}(A_{0})+ \Vert x_{1} \Vert _{L^{1}}\varphi _{p} \bigl(A_{0}+ \bigl\Vert u' \bigr\Vert _{\infty}\bigr) + \Vert x_{2} \Vert _{L^{1}} \varphi _{p}\bigl( \bigl\Vert u' \bigr\Vert _{\infty}\bigr) + \Vert x_{3} \Vert _{L^{1}} \bigr). \end{aligned} \end{aligned}$$
(3.6)

If \(1 < p \leq2\), it follows from Lemma 2.1 that

$$ \bigl\Vert u' \bigr\Vert _{\infty} \leq\frac{2^{2q-4}[\varphi_{q}( \Vert x_{3} \Vert _{L^{1}}) + A_{0}(1+2^{q-2} \Vert x_{1} \Vert _{L^{1}}}{1-2^{2q-4}( \Vert x_{2} \Vert _{L^{1}} + 2^{q-2} \Vert x_{1} \Vert _{L^{1}})}. $$
(3.7)

If \(p >2\) then, by Lemma 2.1, we get

$$ \bigl\Vert u' \bigr\Vert _{\infty} \leq\frac{A_{0}(1+ \varphi_{q}( \Vert x_{1} \Vert _{L^{1}}) + \varphi_{q}( \Vert x_{3} \Vert _{L^{1}})}{1-\varphi_{q}( \Vert x_{1} \Vert _{L^{1}} + \Vert x_{2} \Vert _{L^{1}})}. $$
(3.8)

Since \(\Vert u \Vert= \max\{\Vert u \Vert_{\infty}, \Vert u' \Vert _{\infty}\} \leq A_{0} + \Vert u' \Vert_{\infty}\), in view of (3.7) and (3.8), \(\varOmega_{1}\) is bounded. □

Lemma 3.2

If\(\varOmega_{2} =\{u \in\ker M:-\lambda u +(1-\lambda)JQNu=0, \lambda\in[0,1]\}\), \(J: \operatorname {Im}Q \to\ker M\)is a homomorphism, then\(\varOmega_{2}\)is bounded.

Proof

For \(a, b \in R\), let \(J: \operatorname {Im}Q \to\ker M\) be defined by

$$ J(a+bt)= \frac{1}{C}\bigl[\delta_{11} \vert a \vert +\delta_{12} \vert b \vert + \bigl(\delta _{21} \vert a \vert + \delta_{22} \vert b \vert \bigr)t)\bigr]e^{-t}. $$
(3.9)

If (3.3) holds, for any \(u(t) = a + bt \in\varOmega_{3}\), from \(-\lambda u + (1-\lambda)JQNu =0\), we obtain

{δ11(λ|a|+(1λ)Q1N(a+bt))+δ12(λ|b|+(1λ)Q2N(a+bt))=0,δ21(λ|a|+(1λ)Q1N(a+bt))+δ22(λ|b|+(1λ)Q2N(a+bt))=0.

Since \(C \neq0\),

$$\begin{aligned} \begin{gathered} \lambda \vert a \vert =(1 - \lambda)Q_{1}N(a +bt), \\ \lambda \vert b \vert =(1 - \lambda)Q_{2}N(a +bt). \end{gathered} \end{aligned}$$
(3.10)

From (3.10), when \(\lambda=1\), \(a = b =0\). When \(\lambda=0\),

$$Q_{1}N(a+bt) + Q_{2}N(a+bt)=0, $$

which contradicts (3.3) and (3.4), hence from (\(H_{3}\)), \(|a| \leq l\) and \(|b| \leq l\). For \(\lambda\in(0,1)\), in view of (3.3) and (3.10), we have

$$0\leq\lambda\bigl( \vert a \vert + \vert b \vert \bigr) =(1-\lambda) \bigl[Q_{1}N(a +bt) + Q_{2}N(a+bt)\bigr] < 0, $$

which contradicts \(\lambda(|a|+|b|) \geq0\). Hence, (\(H_{3}\)), \(|a| \leq l\) and \(|b| \leq l\), thus \(\Vert u \Vert\leq2l\). Therefore \(\varOmega _{2}\) is bounded. □

Proof of Theorem 3.1

Since M is quasi-linear, condition (\(A_{1}\)) of Theorem 2.1 holds, Lemma 2.2 proved (\(A_{2}\)), while Lemma 3.1 shows that (\(A_{3}\)) holds.

Let \(\varOmega\supset\varOmega_{1} \cup\varOmega_{2}\) be a nonempty, open and bounded set, \(u \in \operatorname {dom}M \cap\partial\varOmega\), \(H(u,\lambda)=-\lambda u +(1-\lambda)JQNu\), and J be as defined in Lemma 3.2 then \(H(u,\lambda) \neq0\). Therefore by the homotopy property of the Brouwer degree

$$\begin{aligned} \deg\{JQN|_{\overline{\varOmega} \cap\ker M},\varOmega\cap\ker M,0\}&=\deg\bigl\{ H(\cdot, 0), \varOmega\cap\ker M,0\bigr\} \\ &=\deg\bigl\{ H(\cdot,1),\varOmega\cap\ker M,0\bigr\} \\ &=\deg\{-I,\varOmega\cap\ker M,0\} \neq0. \end{aligned}$$

Hence, condition (\(A_{4}\)) of Theorem 2.1 also holds. □

Since all the conditions of Theorem 2.1 are satisfied, the abstract equation \(Mu=Nu\) has at least one solution in \(\overline {\varOmega} \cap \operatorname {dom}M\). Hence, (1.1) has at least one solution.

4 Example

Consider the following boundary value problem:

$$ \left \{ \textstyle\begin{array}{l} (\varphi_{4}(u'(t)))' + e^{-t-2} \sin t \cdot u^{3}+e^{-t-3}\cos t\cdot u^{\prime3} + \frac{1}{6}e^{-6t}=0, \quad t \in (0,+\infty ), \\ \varphi_{4}(u'(0))=\int_{0}^{+\infty }2e^{-2t}\varphi_{4}(u'(t))\,dt, \qquad \varphi_{4}(u'(+\infty ))= 9\int_{0}^{1/9}\varphi_{4}(u'(t))\,dt. \end{array}\displaystyle \right . $$
(4.1)

Here \(v(t) =2e^{-2t}\), \(p=4\), \(q=\frac{4}{3}\), \(\beta_{1} = 9\), \(\eta _{1} = \frac{1}{9}\), \(x_{1}= e^{-t-2}\sin t\) and \(x_{2}=e^{-t-3}\cos t\). Therefore, \(\sum_{j=1}^{1}\beta_{j} \eta_{j}=1\), \(\int_{0}^{+\infty }v(t)\, dt=1\), \(C \neq0\) and \(\varphi_{q}(\Vert x_{1} \Vert_{L^{1}} + \Vert x_{2} \Vert_{L^{2}})<1\). It can easily be seen that conditions (\(H_{1}\))–(\(H_{3}\)) hold. Hence, (4.1) has at least one solution.