1 Introduction

The concept of duality mapping was introduced by Beurling and Livingston [1] in a geometric form. A slightly extended version of the concept was proposed by Asplund [2], who showed how the duality mappings can be characterized via the subdifferentials of convex functions. It is well known that the geometric properties of a Banach space E correspond to the analytic properties of the duality mapping, and it is recognized that if E is smooth, then the duality mapping is single-valued. Park and Rhee [3] defined J-orthogonality in a smooth Banach space using the normalized duality mapping. In this paper, we define the normalized duality mapping on smooth countably normed spaces, generalize the concepts of J-orthogonality and Birkhoff orthogonality in smooth countably normed spaces, and give some basic properties of J-orthogonality in these spaces. Faried and El-Sharkawy [4] defined real uniformly convex complete countably normed spaces and proved that the metric projection on a nonempty convex and closed proper subset of these spaces is well defined. In this paper, we give a relation between metric projection and J-orthogonality and show fundamental links between metric projection and normalized duality mapping in smooth uniformly convex complete countably normed spaces.

2 Preliminaries

Definition 2.1

([5, 6])

A normed linear space E is said to be:

  1. (1)

    Strictly convex if \(\|\frac{x+y}{2}\|<1\) for all \(x ,y \in E \) with \(\|x\|=\|y\|=1\) and \(x \neq y\);

  2. (2)

    Uniformly convex if for any \(\varepsilon \in (0,2]\), there exists \(\delta =\delta (\varepsilon )> 0\) such that if \(x,y \in E\) with \(\|x\|=1\), \(\|y\|=1\), and \(\|x-y\| \geq \varepsilon \), then \(\|\frac{x+y}{2}\| \leq 1-\delta \);

  3. (3)

    Smooth if \(\lim_{t\to 0} \frac{\|x+ty\|-\|x\|}{t} \) exists for all \(x,y \in S(E)\), where \(S(E)\) is the unit sphere of E;

  4. (4)

    Uniformly smooth if for every \(\varepsilon > 0\), there exists \(\delta > 0\) such that for all \(x,y\in E\) with \(\|x\|=1\) and \(\|y\|\leq \delta \), we have \(\|x+y\|+\|x-y\|< 2+\varepsilon \|y\|\).

Definition 2.2

(Metric projection [6])

Let E be a real uniformly convex Banach space, and let K be a nonempty proper subset of E. The operator \(P_{K} : E\rightarrow K\) is called a metric projection operator if it assigns to each \(x\in E\) its nearest point \(\bar{x} \in K\), that is, the solution of the minimization problem

$$ P_{K} x=\bar{x} : \Vert x-\bar{x} \Vert =\inf _{y\in K} \Vert x-y \Vert . $$

Definition 2.3

(The normalized duality mapping [7, 8])

Let E be a real Banach space with norm \(\| \cdot \|\), and let \(E^{*}\) be the dual space of E, and let \(\langle \cdot ,\cdot \rangle \) be the duality pairing. The normalized duality mapping J from E to \(2^{E^{*}} \) is defined by

$$ Jx=\bigl\{ x^{*} \in E^{*} : \bigl\langle x, x^{*}\bigr\rangle = \Vert x \Vert ^{2}= \bigl\Vert x^{*} \bigr\Vert ^{2}\bigr\} . $$

The Hahn–Banach theorem guarantees that \(Jx \neq \emptyset \) for every \(x\in E\). It is well known that if E is a smooth Banach space, then the normalized duality mapping is single-valued. In [8], we got the following example of the normalized duality mapping J in the uniformly convex and uniformly smooth Banach space \(\ell ^{p}\) with \(p\in (1,\infty )\): \(Jx:=\|x\|^{2-p}_{\ell ^{p}}\{x_{1}|x_{1}|^{p-2}, x_{2}|x_{2}|^{p-2},\ldots \} \in \ell ^{q} = {\ell ^{p}}^{*} \) for \(x=\{x_{1},x_{2},\ldots\} \in \ell ^{p}\), where \(\frac{1}{p}+\frac{1}{q}=1\).

Proposition 2.4

([9])

Let E be a smooth Banach space, let \(E^{*}\) be the dual space of E, and let J be the normalized duality mapping from E to \(2^{E^{*}}\). Then J is a continuous operator in E, and \(J(\beta x)=\beta J(x)\) for all \(\beta \in \mathbb{R}\).

Definition 2.5

(Lyapunov functional [7, 8])

Let E be a smooth Banach space, and let \(E^{*}\) be the dual space of E. The Lyapunov functional \(\varphi : E\times E \rightarrow \mathbb{R}\) is defined by

$$ \varphi (y,x)= \Vert y \Vert ^{2} -2 \langle y,Jx \rangle + \Vert x \Vert ^{2} $$

for all \(x,y\in E\), where J is the normalized duality mapping from E to \(2^{E^{*}}\).

Definition 2.6

(Compatible norms [10, 11])

Two norms in a linear space E are said to be compatible if every Cauchy sequence \(\{x_{n}\}\) in E with respect to both norms that converges to a limit \(x\in E\) with respect to one of them also converges to the same limit x with respect to the other norm.

Definition 2.7

(Countably normed space [10, 11])

A linear space E equipped with a countable family of pairwise compatible norms \(\{\|\cdot \|_{n}, n \in \mathbb{N}\}\) is said to be a countably normed space. An example of a countably normed space is the space \(\ell ^{p+0} :=\bigcap_{n} \ell ^{p_{n}}\) (\(1< p < \infty \)) for any choice of a decreasing sequence \({p_{n}}\) converging to p.

Remark 2.8

([11])

For a countably normed space \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\), let \(E_{n}\) be the completion of E with respect to the norm \(\|\cdot \|_{n}\). We may assume that \(\|\cdot \|_{1} \leq \|\cdot \|_{2} \leq \|\cdot \|_{3} \leq \cdots \) in any countably normed space; we also have \(E\subset \cdots \subset E_{n+1} \subset E_{n} \subset \cdots \subset E_{1}\).

Proposition 2.9

([10])

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a countably normed space. Then E is complete if and only if \(E=\bigcap_{n \in \mathbb{N}} E_{n}\). Each Banach space \(E_{n}\) has a dual \(E_{n}^{*}\), which is a Banach space, and the dual of the countably normed space E is given by \(E^{*}=\bigcup_{n \in \mathbb{N}} E_{n} ^{*}\). We have the following inclusions:

$$ {E_{1}^{*}} \subset \cdots \subset {E_{n}^{*}} \subset {E_{n+1}^{*}} \subset \cdots \subset {E^{*}}. $$

Moreover, for \(f\in E_{n}^{*}\), we have \(\|f\|_{n}\geq \|f\|_{n+1} \) for all \(n \in \mathbb{N}\).

Definition 2.10

(Uniformly convex countably normed space [4])

A countably normed space \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) is said to be uniformly convex if \((E_{n}, \| \cdot \|_{n})\) is uniformly convex for all \(n \in \mathbb{N}\).

Theorem 2.11

([4])

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a real uniformly convex complete countably normed space, and let K be a nonempty convex proper subset of E such that K is closed in each \(E_{n}\). Then there exists a unique \(\bar{x} \in K\) such that \(\|x-\bar{x}\|_{n} =\inf_{y \in K} \|x - y\|_{n}\) for all \(n \in \mathbb{N}\), and the metric projection \(P : E\rightarrow K\) is defined by \(P(x)=\bar{x}\).

Definition 2.12

(J-orthogonality [3])

Let E be a smooth Banach space. Two elements \(x,y \in E\) are said to be J-orthogonal, written “x is J-orthogonal to y” or \(x\perp ^{J} y\), if \(\langle y, Jx\rangle =0\).

Definition 2.13

(Gauge function [8])

A gauge function is a continuous strictly increasing function \(\vartheta : \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) such that \(\vartheta (0)=0\) and \(\lim_{t\to \infty } \vartheta (t)=\infty \).

3 Main results

Now we introduce the concept of the normalized duality mapping in smooth countably normed (SCN) spaces.

Definition 3.1

(The normalized duality mapping in SCN spaces)

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a smooth countably normed space such that \(E_{n}\) is the completion of E in \(\|\cdot \|_{n}\) and \((E_{n} , \|\cdot \|_{n})\) is a smooth Banach space for all \(n \in \mathbb{N}\), so that there exists a single-valued normalized duality mapping \(J_{n} : E_{n}\rightarrow E_{n}^{*}\) with respect to \(\|\cdot \|_{n}\) for all \(n \in \mathbb{N}\). Without being confused, we understand that \(\|J_{n}x\|_{n}\) is the \(E_{n}^{*}\)-norm and \(\|x\|_{n}\) is the \(E_{n}\)-norm, for all \(n \in \mathbb{N}\).

We define the following multivalued mapping \(J : E\rightarrow 2^{E^{*}}\) to be the normalized duality mapping of a smooth countably normed space: \(J(x)= \{J_{n}x\}_{n=1}^{\infty } \subseteq E^{*}=\bigcup_{n \in \mathbb{N}} E_{n} ^{*}\), \(\|J_{n}x\|_{n}=\|x\|_{n}\), \(\langle J_{n}x,x\rangle =\|x \|_{n}^{2}\) for \(n \in \mathbb{N}\).

Remark 3.2

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a smooth countably normed space. The sequence of norms is increasing in E, and from the definition of normalized duality mappings \(J_{n}\) for each \(E_{n}\) with respect to \(\|\cdot \|_{n}\) we have

$$ \bigl( \Vert x \Vert _{1}= \Vert J_{1}x \Vert _{1}\bigr) \leq \bigl( \Vert x \Vert _{2}= \Vert J_{2}x \Vert _{2}\bigr) \leq \cdots \leq \bigl( \Vert x \Vert _{n}= \Vert J_{n}x \Vert _{n}\bigr) \leq \cdots , $$

and thus \(\langle J_{1}x,x\rangle \leq \langle J_{2}x,x\rangle \leq \cdots \leq \langle J_{n}x,x\rangle \leq \ldots \) , and using the properties of countably normed spaces, we have \(\|J_{i}x\|_{n}\geq \|J_{i}x\|_{n+1}\) for all i and n.

Remark 3.3

The multivalued normalized duality mapping of a smooth countably normed space cannot be a single-valued mapping, unlike the case of a smooth Banach space. Indeed, if it were a single-valued mapping, then it would be the same single-valued normalized duality mapping for each \(E_{n}\) with respect to \(\|\cdot \|_{n}\), which would imply that \(\langle Jx,x\rangle =\|x\|_{n}^{2}\) for all n. Then we would get \(\|x\|_{1}=\|x\|_{2}=\cdots =\|x\|_{n}=\cdots \) , which would mean that we are back to a normed vector space, and this ruins the construction of the countably normed space.

Proposition 3.4

If \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) is a smooth countably normed space, then \(J_{m}|_{E_{n}}\) is the single-valued normalized duality mapping of \(E_{n}\) with respect to \(\|\cdot \|_{n}\) for all \(m=1,2,\ldots ,n-1\) and \(n\geq 2\).

Proof

Let \(J_{n-1}\) be the normalized duality mapping of \(E_{n-1}\) with respect to \(\|\cdot \|_{n-1}\). We have \(J_{n-1} : E_{n-1} \rightarrow E_{n}^{*} \), \(E_{n-1}^{*} \subseteq E_{n}^{*}\), \(E_{n} \subseteq {E_{n-1}}\), so \(J_{n-1}|_{E_{n}} : E_{n}\rightarrow E_{n}^{*}\) and \(\|J_{n-1}|_{E_{n}} x\|_{n}=\|x\|_{n-1} \), \(\langle J_{n-1} |_{E_{n}}x,x \rangle =\|x\|_{n-1}^{2}\) for all \(x \in E_{n}\subseteq E_{n-1}\). So \(J_{n-1}|_{E_{n}}\) is the single-valued normalized duality mapping of \(E_{n}\) with respect to \(\|\cdot \|_{n-1}\). The same holds for all \(m=1,2,\ldots ,n-1\), and hence \(J_{m}|_{E_{n}}\) is the single-valued normalized duality mapping of \(E_{n}\) with respect to \(\|\cdot \|_{n}\) for all \(n\geq 2\). □

Corollary 3.5

If \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) is a smooth countably normed space, then \(E_{n}\) is a smooth Banach space with respect to \(\|\cdot \|_{m}\), \(m=1,2,\ldots , n-1\), \(n\geq 2\).

Proof

Since \(J_{m}|_{E_{n}}\) is the single-valued normalized duality mapping of \(E_{n}\) with respect to \(\|\cdot \|_{n}\) for all \(m=1,2,\ldots ,n-1\), then \(E_{n}\) is a smooth Banach space with respect to \(\|\cdot \|_{m}\) for all \(n\geq 2\). □

Proposition 3.6

Let E be a smooth countably normed space, let \(E^{*}\) be its dual space, and let \(J_{n}\) be the normalized duality mapping of \(E_{n}\) with respect to \(\|\cdot \|_{n}\) relative to the gauge function \(\vartheta _{n} \), where \(\vartheta _{n} (\|x\|_{n})=\|x\|_{n} = \|J_{n}x\|_{n}\). Define \(\psi _{n}(r)=\int _{0}^{r} \vartheta _{n}(\sigma ) \, d \sigma \). Then \(\psi _{n}(\|y\|_{n})-\psi _{n}(\|x\|_{n})\geq \langle J_{n}x,y-x \rangle \) for all \(y\in E\) and \(n \in \mathbb{N}\).

Proof

We have

$$ \psi _{n}\bigl(\|y\|_{n}\bigr)-\psi _{n}\bigl(\|x\|_{n}\bigr)= \int _{\|x\|_{n}}^{ \|y\|_{n}} \vartheta _{n}(t) \,dt\geq \vartheta _{n}\bigl(\|x\|_{n}\bigr)\bigl(\|y\|_{n}- \|x\|_{n}\bigr) ,\quad \forall n, $$

that is, \(\psi _{n}(\|y\|_{n})-\psi _{n}(\|x\|_{n})=\vartheta _{n}(\|x\|_{n}) \|y\|_{n}- \langle J_{n}x,x \rangle \geq \langle J_{n}x,y-x \rangle \) for all \(y\in E\) and \(n \in \mathbb{N}\). □

Proposition 3.7

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a real smooth uniformly convex complete countably normed space, and let K be a nonempty proper convex subset of E such that K is closed in each \(E_{n}\). Then \(\bar{x}=P_{K}(x)\) is the metric projection of an arbitrary element \(x \in E\) if and only if \(\langle J(x- \bar{x}), \bar{x}-y \rangle \geq 0\) for all \(y \in K\), where J is the normalized duality mapping on E.

Proof

“⇒” By the definition of the metric projection and the convexity of K we have

$$ \|x- \bar{x}\|_{n} \leq \bigl\| x-\bigl(\mu y+(1-\mu )\bar{x}\bigr)\bigr\| _{n} ,\quad \forall y \in K , \mu \in [0,1] ,\forall n. $$
(*)

Consider \(\psi _{n}(r)= \int _{0}^{r} \vartheta _{n}(\sigma ) \, d \sigma \). If \(J_{n}\) is the normalized duality mapping relative to the gauge function \(\vartheta _{n}\) with respect to \(\|\cdot \|_{n}\), then (*) is equivalent to

$$ \psi _{n}\bigl(\|x- \bar{x}\|_{n}\bigr) \leq \psi _{n} \bigl( \bigl\| x - \bigl[ \mu y +(1- \mu ) \bar{x} \bigr] \bigr\| _{n} \bigr). $$
(**)

By Proposition 3.6 and (**) we get

$$ 0 \geq \psi _{n}\bigl( \Vert x- \bar{x} \Vert _{n} \bigr)-\psi _{n}\bigl( \bigl\Vert x-\bigl(\mu y+ (1-\mu ) \bar{x} \bigr) \bigr\Vert _{n}\bigr)) \geq \bigl\langle J_{n} \bigl(x- \bar{x} - \mu (y-\bar{x})\bigr), \mu (y- \bar{x}) \bigr\rangle . $$

As μ tends to 0, we get \(\langle J_{n}(x- \bar{x}),y-\bar{x} \rangle \leq 0\) for all \(y \in K\) and n, that is, \(\langle J_{n}(x- \bar{x}), \bar{x}-y \rangle \geq 0\) for all \(y \in K\) and n.

“⇐” If \(\langle J_{n}(x- \bar{x}), \bar{x} -y \rangle \geq 0\) for all \(y \in K\) and n, then using Proposition 3.6, we get

$$ \psi _{n}\bigl( \Vert x-y \Vert _{n}\bigr)-\psi _{n}\bigl( \Vert x- \bar{x} \Vert _{n}\bigr) \geq \bigl\langle J_{n}(x- \bar{x}), \bar{x}-y\bigr\rangle \geq 0. $$

Thus \(\|x- \bar{x}\|_{n} \leq \|x-y\|_{n}\) for all \(y \in K\) and n, and so \(\bar{x}= P_{K}(x)\). □

Theorem 3.8

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a real smooth uniformly convex complete countably normed space, and let K be a nonempty proper convex subset of E such that K is closed in each \(E_{n}\).

Then \(\bar{x}=P_{K}(x)\) is the metric projection of an arbitrary element \(x \in E\) if and only if \(\langle J_{n}(x- \bar{x}),x-y\rangle \geq \|x- \bar{x}\|_{n}^{2}\) for all \(y \in K\) and n.

Proof

“⇒” By Proposition 3.6 we have \(\langle J_{n}(x- \bar{x}), \bar{x}-y\rangle \geq 0\) for all \(y \in K\) and n. Besides,

$$\begin{aligned} \bigl\langle J_{n}(x- \bar{x}), \bar{x}-y\bigr\rangle =& J_{n}(x- \bar{x}) (\bar{x}-y) \\ =&J_{n}(x- \bar{x}) (\bar{x}-x)+J_{n}(x-\bar{x}) (x-y) \\ =&- \Vert x-\bar{x} \Vert _{n}^{2}+J_{n}(x- \bar{x}) (x-y), \end{aligned}$$

and therefore \(\langle J_{n}(x-\bar{x}),x-y\rangle \geq \|x-\bar{x}\|_{n}^{2}\) for all \(y \in K\) and n.

“⇐” If \(\|x-\bar{x}\|_{n}=0\), then we are done. So, let us assume that \(\|x-\bar{x}\|_{n} \neq 0\). Then

$$\begin{aligned} \Vert x-\bar{x} \Vert _{n} \leq & \frac{1}{ \Vert x-\bar{x} \Vert _{n}} \bigl\langle J_{n}(x- \bar{x}),x-y \bigr\rangle \\ \leq & \frac{1}{ \Vert x-\bar{x} \Vert _{n}} \bigl\Vert J_{n}(x-\bar{x}) \bigr\Vert _{n} \Vert x-y \Vert _{n} \\ =& \Vert x-y \Vert _{n},\quad \forall y \in K, \forall n, \end{aligned}$$

that is, \(\bar{x}= P_{K}(x)\). □

Definition 3.9

(J-orthogonality in smooth countably normed spaces)

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a smooth countably normed space. We say that an element \(x\in E\) is J-orthogonal to an element \(y\in E\) and write \(x \perp ^{J} y\) if \(\langle y, J_{n}x \rangle =0\) for all n, that is, \(\langle y,Jx\rangle =0\), where J is the normalized duality mapping of E.

Definition 3.10

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a smooth countably normed space, and let \(x_{1}, x_{2}, \ldots , x_{n} \in E\setminus \{0\}\). Then the set \(\{x_{1},x_{2},\ldots , x_{n}\}\) is called a J-orthogonal set if \(x_{i}\perp x_{j}\) for all \(i, j \in \{1,2,\ldots , n\}\) with \(i\neq j\).

Definition 3.11

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a smooth countably normed space. We say that an element \(x\in E\) is orthogonal to an element \(y\in E\) in the Birkhoff sense if \(\|x+\alpha y\|_{i}^{2} \geq \|x\|_{i}^{2}\) for all \(i=1,2,\ldots , n, \ldots \) and \(\alpha \in \mathbb{R}\).

Proposition 3.12

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a smooth countably normed space, and let \(x_{1}, x_{2}, \ldots , x_{n} \in E\setminus \{0\}\). Then:

  1. (1)

    If \(\{x_{1},x_{2},\ldots , x_{n}\}\) is a J-orthogonal set, then \(x_{1},x_{2},\ldots , x_{n}\) are linearly independent;

  2. (2)

    Let \(x,y \in E\). Then \(x\perp ^{J} y\) if and only if \(x\perp y\) in the Birkhoff sense.

Proof

(1) Let \(\alpha _{1} x_{1}+\alpha _{2} x_{2}+\cdots +\alpha _{n} x_{n}=0\) for some scalars \(\alpha _{1} , \alpha _{2} , \ldots , \alpha _{n} \in \mathbb{R}\).

For all \(m \in \{1, \ldots , n\}\) and i, we have:

$$\begin{aligned} \langle \alpha _{1} x_{1}+\cdots +\alpha _{n} x_{n}, J_{i}x_{m} \rangle =& \alpha _{1} \langle x_{1},J_{i}x_{m} \rangle +\cdots + \alpha _{n} \langle x_{n}, J_{i}x_{m} \rangle \\ =&\alpha _{m} \Vert x_{m} \Vert _{i}^{2} \\ =&0, \end{aligned}$$

and so \(\alpha _{m}=0\) for all m. Thus \(x_{1},x_{2},\ldots , x_{n}\) are linearly independent.

(2) If \(x\perp ^{J} y\), then \(\langle y,J_{i}x\rangle =0\) for all i. Besides, using the Lyapunov functional, we have

$$\begin{aligned} \varphi _{i}(x+\alpha y,x) =& \Vert x+\alpha y \Vert _{i}^{2}-2 \langle x+ \alpha y, J_{i}x \rangle + \Vert x \Vert _{i}^{2} ,\quad \forall i \\ =& \Vert x+\alpha y \Vert _{i}^{2}- \Vert x \Vert _{i}^{2}-2\alpha \langle y, J_{i}x \rangle \\ \geq & 0,\quad \forall i, \forall \alpha \in \mathbb{R}. \end{aligned}$$

Thus \(\|x+\alpha y\|_{i}^{2} \geq \|x\|_{i}^{2}\) for all i and \(\alpha \in \mathbb{R}\). Hence \(x\perp y\) in the Birkhoff sense.

On the other hand, let \(x\perp y\) in the Birkhoff sense, that is, \(\|x+\alpha y\|_{i}^{2} \geq \|x\|_{i}^{2}\) for all i and \(\alpha \in \mathbb{R}\). If \(\langle y, J_{i} x\rangle \neq 0\) for some i, then by taking \(\alpha _{0} = \frac{\|x+\alpha y\|_{i}^{2}-\|x\|_{i}^{2}}{\langle y, J_{i}x\rangle }\) we get that the Lyapunov functional \(\varphi _{i} (x+\alpha _{0} y,x) < 0\). This contradicts that \(\varphi _{i}(x,y) > 0\) for all i. □

Proposition 3.13

Let \(\{x_{1},x_{2},\ldots , x_{n}\}\) be a J-orthogonal set in a smooth countably normed space E with dual space \(E^{*}\). The set \(\{J_{i}x_{1}, \ldots , J_{i}x_{n}\}\) is linearly independent in the dual space \(E^{*}\) for all i.

Proof

If \(\alpha _{1} J_{i}x_{1}+ \cdots +\alpha _{n} J_{i}x_{n}=0 \) for some scalars \(\alpha _{1} , \ldots , \alpha _{n} \in \mathbb{R} \), then for each \(m \in \{1,2,\ldots ,n\}\), we get \(\langle x_{m},\alpha _{1} J_{i}x_{1}+\cdots + \alpha _{n} J_{i}x_{n} \rangle = \alpha _{m} \|x\|_{i}^{2} = 0\) for all i. Hence \(\alpha _{m} =0\) for all m. Thus, for all i, the set \(\{J_{i}x_{1}, \ldots , J_{i}x_{n}\}\) is linearly independent in the dual space \(E^{*}\). □

The following theorem gives a relation between metric projection and orthogonality in real uniformly convex complete countably normed spaces.

Theorem 3.14

Let \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) be a real smooth uniformly convex complete countably normed space, and let M be a nonempty proper subspace of E such that M is closed in each \(E_{i}\). Then

$$ \forall x\in E\setminus M, \exists ! \bar{x} \in M \textit{:} \quad \Vert x-\bar{x} \Vert _{i}= \inf_{y\in M} \Vert x-y \Vert _{i} $$

for all i if and only if \(x-\bar{x} \bot ^{J} M\).

Proof

Assume that

$$ \forall x\in E\setminus M, \exists ! \bar{x} \in M \mbox{:}\quad \Vert x-\bar{x} \Vert _{i}= \inf_{y\in M} \Vert x-y \Vert _{i} ,\quad \forall i. $$

If \(z\in M\), then \(\bar{x}-\alpha z \in M\) for all \(\alpha \in \mathbb{R}\), and \(\|x-\bar{x}\|_{i} \leq \|x-(\bar{x}-\alpha z)\|_{i}=\|(x-\bar{x})+ \alpha z\|_{i}\) for all i. Therefore \(x-\bar{x}\) is orthogonal to M in the Birkhoff sense. Consequently, \(x-\bar{x}\perp ^{J} M\).

On the other hand, if \(x-\bar{x}\perp ^{J} M\), then \(x-\bar{x}\) is orthogonal to M in the Birkhoff sense, that is, \(\|x-\bar{x}\|_{i} \leq \|x-\bar{x}+\alpha y\|_{i}\) for all \(\alpha \in \mathbb{R}\), \(y\in M\), and i.

Since \(\bar{x}-y \in M\), for all \(y\in M\) and i, we get

$$ \Vert x-\bar{x} \Vert _{i}\leq \bigl\Vert x- \bar{x}+\alpha ( \bar{x}-y) \bigr\Vert _{i} $$

for all \(\alpha \in \mathbb{R}\).

Taking \(\alpha =1\), we get \(\|x-\bar{x}\|_{i} \leq \|x-y\|_{i}\) for all \(y\in M\) and i. Thus \(\|x-\bar{x}\|_{i}=\inf_{y \in M} \|x-y\|_{i}\) for all i. □

Example 3.15

\(\ell _{2+0} := \bigcap_{n \in \mathbb{N}} \ell _{2+ \frac{1}{n}}\) is a uniformly convex uniformly smooth complete countably normed space with the norms

$$ \Vert \cdot \Vert _{3} \leq \Vert \cdot \Vert _{2.5}\leq \cdots \leq \Vert \cdot \Vert _{2+ \frac{1}{n}}\leq \cdots $$

for each \(x=\{x_{i}\}\in \ell _{2+0}\), and

$$ J_{n}(x)= \Vert x \Vert _{2+\frac{1}{n}}^{-\frac{1}{n}} \bigl\{ x_{i} \vert x_{i} \vert ^{ \frac{1}{n}} \bigr\} \in \ell _{\frac{2n+1}{n+1}} ,\quad \forall n. $$

Consider the closed subspace M of \(\ell _{2+0}\) generated by \(\{1,0,0,0,\ldots \}\). Using the previous theorem, we get

$$\begin{aligned}& P_{M}(x)= \bar{x}=\{{\bar{x}}_{1},0,0,\ldots\} \\& \quad \Leftrightarrow\quad \bigl\langle \{t,0,0,\ldots \},J_{n}(x-\bar{x})\bigr\rangle =\{0,0,\ldots\} ,\quad \forall t \in \mathbb{R}, \forall n \\& \quad \Leftrightarrow\quad \bigl\langle \{t,0,0,\ldots\},J_{n}\{x_{1}-{ \bar{x}}_{1}, x_{2},x_{3},\ldots,x_{n},\ldots \}\bigr\rangle =\{0,0,\ldots\} \\& \quad \Leftrightarrow\quad \bigl\langle \{t,0,0,\ldots\}, \Vert x-\bar{x} \Vert _{2+\frac{1}{n}}^{- \frac{1}{n}} \bigl\{ \vert x_{1}-{\bar{x}}_{1} \vert ^{-\frac{1}{n}}(x_{1}- {\bar{x}}_{1}),\ldots,x_{i} \vert x_{i} \vert ^{ \frac{1}{n}},\ldots\bigr\} \bigr\rangle = \{0,0,\ldots\} \\& \quad \Leftrightarrow\quad \Vert x-\bar{x} \Vert _{2+\frac{1}{n}}^{-\frac{1}{n}} \vert x_{1}-{ \bar{x}}_{1} \vert ^{-\frac{1}{n}}(x_{1}- {\bar{x}}_{1})t=0 ,\quad\forall t \in \mathbb{R} , \forall n \\& \quad \Leftrightarrow\quad {\bar{x}}_{1}=x_{1},\qquad P_{M}(x)= \bar{x}=\{x_{1},0,0,\ldots \}. \end{aligned}$$

Definition 3.16

The J-dual cone of a nonempty subset S of a smooth countably normed space \((E, \{\|\cdot \|_{n}, n \in \mathbb{N}\})\) is the set

$$ S_{J}^{o}=\bigl\{ x\in E : \langle y,J_{i}x\rangle \leq 0 , \forall y \in S, \forall i\bigr\} . $$

In addition, the J-orthogonal complement of S is the set

$$ S_{J}^{\perp }=S_{J}^{o}\cap (-S)_{J}^{o}=\bigl\{ x\in E : \langle y,J_{i}x \rangle = 0 ,\forall y\in S, \forall i\bigr\} . $$

Theorem 3.17

Let S be a nonempty subset of a smooth countably normed space \((E, \{{\|\cdot \|}_{n}, n \in \mathbb{N}\})\). Then:

  1. (1)

    \(S_{J}^{o}\) and \(S_{J}^{\perp }\) are closed cones;

  2. (2)

    \(S_{J}^{o}=(\bar{S})_{J}^{o}\) and \(S_{J}^{\perp }= (\bar{S})_{J}^{\perp }\);

  3. (3)

    \(S_{J}^{o}=[\operatorname{conv}(S)]_{J}^{o}={\overline{[\operatorname{conv}(S)]}}_{J}^{o}\) and \(S_{J}^{\perp }=[\operatorname{span}(S)]_{J}^{\perp }=\overline{[\operatorname{span}(S)]}_{J}^{\perp }\), where \(\operatorname{conv}(S)\) is the convex hull of S, and \(\operatorname{span}(S)\) is the subspace generated by S;

  4. (4)

    \(\bar{S}\subset (S_{J}^{o})^{o}\) and \(\bar{S}\subset (S_{J}^{\perp })^{\perp }\);

  5. (5)

    If C is a cone, then \((C-y)_{J}^{o}=C_{J}^{o}\cap y_{J}^{\perp }\) for all \(y\in C\);

  6. (6)

    If M is a subspace, then \(M_{J}^{o}=M_{J}^{\perp }\).

Proof

(1) If \(x_{n}\in S_{J}^{o}\) and \(x_{n}\rightarrow x\), then for all \(y \in S\), \(\langle y,J_{i}x \rangle =\lim_{n \to \infty } \langle y,J_{i}x_{n} \rangle \leq 0\)i implies that \(x \in S_{J}^{o}\), and thus \(S_{J}^{o}\) is closed. If \(x \in S_{J}^{o}\) and \(\alpha \geq 0\), then for all \(y \in S\) and i, we get

$$ \bigl\langle y,J_{i}(\alpha x) \bigr\rangle = \langle y,\alpha J_{i}x \rangle = \alpha \langle y,J_{i}x\rangle \leq 0. $$

Hence \(\alpha x\in S_{J}^{o}\), and thus \(S_{J}^{o}\) is a cone. Since \(S_{J}^{\perp }= S_{J}^{o} \cap (-S)_{J}^{o}\), \(S_{J}^{\perp }\) is a closed cone.

(2) Since \(S \subseteq \bar{S}\), we have \((\bar{S})_{J}^{o}\subseteq S_{J}^{o}\). If \(x\in S_{J}^{o}\) and \(y\in \bar{S}\), choose \(y_{n} \in S\) such that \(y_{n}\rightarrow y\). Then \(\langle y,J_{i}x\rangle = \lim_{n \to \infty } \langle y_{n},J_{i}x \rangle \leq 0\) for all i implies \(x \in (\bar{S})_{J}^{o}\). Thus \(S_{J}^{o} = (\bar{S})_{J}^{o}\). Moreover, \(S_{J}^{\perp }= (\bar{S})_{J}^{\perp }\).

(3) Since \(S\subseteq \operatorname{conv}(S)\), \([\operatorname{conv}(S)]_{J}^{o} \subseteq S_{J}^{o}\). Let \(x \in S_{J}^{o}\) and \(y \in \operatorname{conv}(S)\). By the definition of \(\operatorname{conv}(S)\), \(y= \sum_{m=1}^{n} \rho _{m} y_{m}\) for some \(y_{i} \in S\) and \(\rho _{i} \geq 0\) with \(\sum_{m=1}^{n} \rho _{m} =1\), \(i=1,2, \ldots ,n\).

Then \(\langle y,J_{i}x\rangle = \sum_{m=1}^{n} \rho _{m} \langle y_{m},J_{i}x\rangle \leq 0\) for all i implies \(x \in [\operatorname{conv}(S)]_{J}^{o}\), so \(S_{J}^{o} \subseteq [\operatorname{conv}(S)]_{J}^{o}\). Thus \(S_{J}^{o}=[\operatorname{conv}(S)]_{J}^{o}\). Moreover, \(S_{J}^{\perp }= [\operatorname{span}(S)]_{J}^{\perp }= \overline{[\operatorname{span}(S)]}_{J}^{\perp }\).

(4) If \(x \in S\), then for all \(y \in S_{J}^{o}\), \(\langle x,J_{i}y\rangle \leq 0\) for all i. Hence \(x\in (S_{J}^{o})^{o}\). Thus \(S\subseteq (S_{J}^{o})^{o}\). Since \((S_{J}^{o})^{o} \) is closed, \(\bar{S} \subseteq (S_{J}^{o})^{o}\).

(5) Now \(x \in (C-y)_{J}^{o}\) if and only if \(\langle c-y,J_{i}x\rangle \leq 0\) for all i and \(c\in C\). Let \(x \in (C-y)_{J}^{o}\). Taking \(c=0\) and \(c=2y\), we have \(\langle y,J_{i}x\rangle =0\), and \(\langle c,J_{i}x\rangle \leq 0\) for all i and \(c\in C\). Thus \(x \in {C_{J}^{o}\cap y_{J}^{\perp }}\). Moreover, if \(x \in {C_{J}^{o}\cap y_{J}^{\perp }}\), then \(\langle c,J_{i}x\rangle \leq 0\) and \(\langle y,J_{i}x\rangle = 0\) for all i and \(c \in C\). Thus \(x\in (C-y)_{J}^{o}\). Therefore \((C-y)_{J}^{o}= C_{J}^{o} \cap y_{J}^{\perp }\) for all \(y \in C\).

(6) If M is a subspace of E, then \(-M=M\) implies \(M_{J}^{\perp }= M_{J}^{o} \cap (-M)_{J}^{o} =M_{J}^{o}\). □

4 Conclusion

In this paper, we defined J-orthogonality and Birkhoff orthogonality in smooth countably normed spaces and showed that these two types of orthogonality coincide in these spaces. Besides, we proved some basic properties of J-orthogonality in smooth countably normed spaces and gave a relation between J-orthogonality and metric projection on smooth uniformly convex complete countably normed spaces. Moreover, we gave fundamental links between J-orthogonality and metric projection in smooth uniformly convex complete countably normed spaces. In addition, we defined the J-dual cone and J-orthogonal complement on a nonempty subset S of a smooth countably normed space and proved some basic results about the J-dual cone and J-orthogonal complement of S.