In vivo validation of a theory-based single-point T1 mapping pulse sequence for quantitative first-pass cardiac perfusion MRI

  • Elodie Breton
  • Hyejin Eum
  • Sohae Chung
  • Daniel Kim
  • Leon Axel
Open Access
Moderated poster presentation


Saturation Pulse Leave Ventricular Cavity Saturation Recovery Trigger Delay TurboFLASH Sequence 


In quantitative analysis of first-pass contrast-enhanced cardiac perfusion MRI, the signal-time curves must be converted to contrast agent (gadolinium-DTPA) concentration-time curves. A theory-based single-point T1 measurement method has been proposed and validated in phantoms at 1.5 T [1, 2] and 3 T (unpublished).


To validate in vivo the accuracy of the proposed single-point T1 mapping pulse sequence against a reference pulse sequence.


Two healthy volunteers were imaged in a short-axis plane of the heart on a 3 T whole-body MR scanner (Tim-Trio, Siemens) at 9 time points: pre-contrast, 5, 10, 15, and 20 min post first injection (0.1 mmol/kg, Magnevist) of Gd-DTPA, and 5, 10, 15, and 20 min post second injection of Gd-DTPA. A saturation-recovery TurboFLASH sequence was implemented with the following parameters: FOV = 320 mm × 262 mm, slice thickness = 8 mm, matrix = 144 × 94, TE/TR = 1.24 ms/2.4 ms, flip angle = 10°, T-SENSE-factor = 2, centric k-space trajectory, effective saturation pulse [3] with delay time (TD) = 50 ms, and total image acquisition time = 176 ms. The effective longitudinal magnetization in the center of k-space was calculated using the Bloch equation. A proton density-weighted image was acquired in the first heartbeat, without the saturation pulse, in order to normalize the image signal, and obtain a theoretical relationship between the signal and T1(Fig. 1a). Contours for the myocardium and left ventricular (LV) cavity were drawn manually (Fig 1b).
Figure 1

a) Theoretical normalized signal intensity vs T 1 (calculated for the sequence parameters)/b) Representative LV cavity (black) and wall (white) ROIs.

Reference T1 measurements were performed with a multi-point saturation recovery TurboFLASH sequence with variable TD and a centric k-space trajectory. A varying trigger delay was introduced to acquire in mid-to-late-diastole, 550 ms after QRS detection. A least square linear regression was used to fit the experimental 6-point-curve (no saturation pulse - TD = 200-300-400-500-550 ms). The single-point and reference T1 measurement pulse sequences were performed during separate breathholds of 8 s and 6 s respectively. Measured T1s were converted to Gd-concentrations ([Gd]) assuming fast water exchange condition [4] and T1 relaxivity of 3.8 L/mmol/s [5, 6].


Figure 2a/b show respectively the single point T1/[Gd] plotted against the reference T1/[Gd] in the LV cavity and the myocardium. A strong linear correlation was found for all curves (Pearson correlation coefficient = 0.98; p < 0.001). Representatives LV cavity and wall [Gd]-time curves calculated from data acquired during first passage of Gd-DTPA are shown in (fig. 2c).
Figure 2

a) Linear correlation bw. single-point and reference T 1 . b) Linear correlation bw. single-point and references Gd-DTPA concentrations. c) LV cavity and wall GD-time curve of a cardiac first-pass perfusion, calculated from the single-point T1 method.


The study shows that our theory-based single-point T1 measurement method and the multi-point T1 measurement method produce quantitatively equivalent [Gd] values. Future studies include in vivo validation in patients.


  1. 1.
    Cernicau, et al: Acad Radiol. 2006Google Scholar
  2. 2.
    Kim : MRM.Google Scholar
  3. 3.
    Hsu, et al : JRMI. 2008Google Scholar
  4. 4.
    Donahue, et al : JRMI. 1997Google Scholar
  5. 5.
    Rohrer, et al : Invest Radiol. 2005Google Scholar
  6. 6.
    Pinstaske, et al : Invest Radiol. 2006Google Scholar

Copyright information

© Breton et al; licensee BioMed Central Ltd. 2010

This article is published under license to BioMed Central Ltd.

Authors and Affiliations

  • Elodie Breton
    • 1
  • Hyejin Eum
    • 1
  • Sohae Chung
    • 1
  • Daniel Kim
    • 1
  • Leon Axel
    • 1
  1. 1.NYU Langone Medical Center - RadiologyNew YorkUSA

Personalised recommendations