Skip to main content
Log in

Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We provide a dynamical proof of the second law of thermodynamics, along the lines of an argument of Penrose and Gibbs, making crucial use of the upper semicontinuity of the mean entropy proved by Robinson and Ruelle and Lanford and Robinson. An example is provided by a class of models of quantum spin systems introduced by Emch and Radin. Consequences regarding irreversibility and the time arrow, as well as possible extensions to quantum continuous systems, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1987)

    Book  Google Scholar 

  2. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  3. Carruthers, G.R.: Atomic and molecular hydrogen in interstellar space. Sp. Sci. Rev. 10, 459 (1970)

    Article  Google Scholar 

  4. Emch, G.G.: Non-markovian model for the approach to equilibrium. J. Math. Phys. 7, 1198 (1966)

    Article  MathSciNet  Google Scholar 

  5. Emch, G.G.: Generalized K flows. Commun. Math. Phys. 49, 191–215 (1976)

    Article  MathSciNet  Google Scholar 

  6. Fannes, M.: A continuity property of the entropy density for quantum lattice systems. Commun. Math. Phys. 31, 291–294 (1973)

    Article  Google Scholar 

  7. Froehlich, J.: A brief review of the ET.H approach to quantum mechanics. arXiv:1905.06603 (2019)

  8. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghi, N.: Gibbs and Boltzmann entropy in classical and quantum mechanics. arXiv:1903.11870 (2019 )

  9. Haag, R.: On the sharpness of localization of individual events in space and time. Found. Phys. 43, 1295–1313 (2014)

    Article  MathSciNet  Google Scholar 

  10. Harrison, E.R.: Cosmology. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  11. Jäkel, C., Narnhofer, H., Wreszinski, W.F.: On the mixing property for a class of states of relativistic quantum fields. J. Math. Phys. 51, 052703 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lowe, I., Norberg, R.E.: Free induction decays in solids. Phys. Rev. 107, 46 (1957)

    Article  Google Scholar 

  13. Lebowitz, J.L., Penrose, O.: Modern ergodic theory. Phys. Today 26, 23–29 (1973)

    Article  Google Scholar 

  14. Lanford, O., Robinson, D.W.: Mean entropy of states in quantum statistical mechanics. J. Math. Phys. 9, 1120 (1968)

    Article  Google Scholar 

  15. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)

    Article  MathSciNet  Google Scholar 

  16. Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999)

    Article  MathSciNet  Google Scholar 

  17. Lieb, E., Yngvason, J.: The entropy concept for non-equilibrium states. Proc. R. Soc. A 469, 20130408 (2013)

    Article  MathSciNet  Google Scholar 

  18. Nachtergaele, B., Sims, R., Young, A.: Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps and spectral-flow automorphisms. J. Math. Phys. 60, 061101 (2019)

    Article  MathSciNet  Google Scholar 

  19. Narnhofer, H., Thirring, W.: Algebraic K systems. Lett. Math. Phys. 20, 231 (1990)

    Article  MathSciNet  Google Scholar 

  20. Narnhofer, H., Thirring, W.: Galilei invariant quantum field theories with pair interaction—a review. Int. J. Mod. Phys. A 17, 2937–2970 (1991)

    Article  MathSciNet  Google Scholar 

  21. Narnhofer, H., Wreszinski, W.F.: On reduction of the wave packet, decoherence, irreversibility and the second law of thermodynamics. Phys. Rep. 541, 249–278 (2014)

    Article  MathSciNet  Google Scholar 

  22. Penrose, O.: Foundations of Statistical Mechanics. Pergamon Press, Oxford (1970)

    MATH  Google Scholar 

  23. Penrose, O.: Foundations of statistical mechanics. Rep. Progr. Phys. 42, 1937 (1979)

    Article  Google Scholar 

  24. Pusz, W., Woronowicz, S.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978)

    Article  MathSciNet  Google Scholar 

  25. Radin, C.: Approach to equilibrium in a simple model. J. Math. Phys. 11, 2945 (1970)

    Article  MathSciNet  Google Scholar 

  26. Robinson, D.W.: The statistical mechanics of quantum spin systems. Commun. Math. Phys. 6, 151 (1967)

    Article  MathSciNet  Google Scholar 

  27. Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)

    Article  MathSciNet  Google Scholar 

  28. Robinson, D.W., Ruelle, D.: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys. 5, 288 (1967)

    Article  MathSciNet  Google Scholar 

  29. Ruelle, D.: States of classical statistical mechanics. J. Math. Phys. 8, 1657 (1967)

    Article  Google Scholar 

  30. Sewell, G.L.: Quantum Theory of Collective Phenomena. Oxford University Press, Oxford (1986)

    Google Scholar 

  31. Sinai, Ya G.: Topics in Ergodic Theory. Princeton University Press, Princeton (1994)

    Book  Google Scholar 

  32. Thirring, W.: Classical Mathematical Physics, 3rd edn. Springer, Berlin (1992)

    Google Scholar 

  33. Wreszinski, W.F.: Unstable States in a Model of Nonrelativistic Quantum Electrodynamics. Paper in preparation

Download references

Acknowledgements

We should like to thank Lawrence Landau, Heide Narnhofer and Derek W. Robinson for their remarks in a fruitful correspondence. The remarks of professors Oliver Penrose and David Ruelle in correspondence are also gratefully acknowledged. In a previous version we overlooked the fact that the density matrices \((\rho _{t})_{\Lambda }\) and \(\rho _{\Lambda ,t}\), the latter given by (2.10), are not the same, unless there are no interactions. This was pointed out to us by Lawrence Landau, as well as by the reviewer. We are very grateful to the reviewer, who generously provided us with Propositions 2.1 and 2.2, which prove that this difference indeed does not affect the specific entropy. He should be considered a co-author of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter F. Wreszinski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wreszinski, W.F. Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics. Quantum Stud.: Math. Found. 7, 125–136 (2020). https://doi.org/10.1007/s40509-019-00203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-019-00203-8

Keywords

Navigation