Advertisement

Drugs

, Volume 78, Issue 6, pp 621–641 | Cite as

Individualising Therapy to Minimize Bacterial Multidrug Resistance

  • A. J. Heffernan
  • F. B. Sime
  • J. Lipman
  • J. A. Roberts
Review Article

Abstract

The scourge of antibiotic resistance threatens modern healthcare delivery. A contributing factor to this significant issue may be antibiotic dosing, whereby standard antibiotic regimens are unable to suppress the emergence of antibiotic resistance. This article aims to review the role of pharmacokinetic and pharmacodynamic (PK/PD) measures for optimising antibiotic therapy to minimise resistance emergence. It also seeks to describe the utility of combination antibiotic therapy for suppression of resistance and summarise the role of biomarkers in individualising antibiotic therapy. Scientific journals indexed in PubMed and Web of Science were searched to identify relevant articles and summarise existing evidence. Studies suggest that optimising antibiotic dosing to attain defined PK/PD ratios may limit the emergence of resistance. A maximum aminoglycoside concentration to minimum inhibitory concentration (MIC) ratio of > 20, a fluoroquinolone area under the concentration–time curve to MIC ratio of > 285 and a β-lactam trough concentration of > 6 × MIC are likely required for resistance suppression. In vitro studies demonstrate a clear advantage for some antibiotic combinations. However, clinical evidence is limited, suggesting that the use of combination regimens should be assessed on an individual patient basis. Biomarkers, such as procalcitonin, may help to individualise and reduce the duration of antibiotic treatment, which may minimise antibiotic resistance emergence during therapy. Future studies should translate laboratory-based studies into clinical trials and validate the appropriate clinical PK/PD predictors required for resistance suppression in vivo. Other adjunct strategies, such as biomarker-guided therapy or the use of antibiotic combinations require further investigation.

Notes

Acknowledgements

Aaron Heffernan would like to acknowledge funding from a Griffith School of Medicine Research Higher degree scholarship. Fekade Sime would like to acknowledge funding from a University of Queensland Post Doctoral Fellowship. Jason Roberts would like to recognise funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence (APP1099452) and a Practitioner Fellowship (APP1117065).

Compliance with Ethical Standards

Conflict of interest

Jason Roberts would like to declare collaborations with MSD, Bayer, Astellas, Pfizer, bioMerieux and Accelerate Diagnostics but none of which are considered relevant to the content of this paper. Aaron Heffernan, Fekade Sime and Jeffrey Lipman have no conflicts of interest to declare.

References

  1. 1.
    Satlin MJ, Cohen N, Ma KC, Gedrimaite Z, Soave R, Askin G, et al. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Infect. 2016;73:336–45.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect. 2012;18:54–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Looke DFM, Gottlieb T, Jones CA, Paterson DL. Gram-negative resistance: can we combat the coming of a new “Red Plague”? MJA. 2013;198:243–4.PubMedGoogle Scholar
  4. 4.
    Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Deak D, Outterson K, Powers JH, Kesselheim AS. Progress in the fight against multidrug-resistant bacteria? A review of US Food and Drug Administration-Approved Antibiotics, 2010–2015. Ann Intern Med. 2016;165:363–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Combes A, Luyt CE, Fagon JY, Wolff M, Trouillet JL, Chastre J, et al. Early predictors for infection recurrence and death in patients with ventilator-associated pneumonia. Crit Care Med. 2007;35:146–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Fernandez-Cuenca F, Gomez-Sanchez M, Rodriguez-Bano J, Martinez-Martinez L, Vila J, Bou G, et al. Epidemiological and clinical features associated with colonisation/infection by Acinetobacter baumannii with phenotypic heterogeneous resistance to carbapenems. Int J Antimicrob Agents. 2012;40:235–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Abdul-Aziz MH, Lipman J, Mouton JW, Hope WW, Roberts JA. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Semin Respir Crit Care Med. 2015;36:136–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Sager R, Kutz A, Mueller B, Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med. 2017;15:11.CrossRefGoogle Scholar
  10. 10.
    Bouadma L, Luyt C-E, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsai D, Lipman J, Roberts JA. Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care. 2015;21:412–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Scaglione F, Esposito S, Leone S, Lucini V, Pannacci M, Ma L, et al. Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur Resp J. 2009;34:394–400.CrossRefGoogle Scholar
  13. 13.
    Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37:840–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44:357–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194:681–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Pajot O, Burdet C, Couffignal C, Massias L, Armand-Lefevre L, Foucrier A, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70:1487–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother. 2008;52:3987–93.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52:668–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther. 2001;23:1231–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA. β-Lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol. 2012;39:489–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17:479–501.PubMedCrossRefGoogle Scholar
  25. 25.
    Felton TW, Goodwin J, O’Connor L, Sharp A, Gregson L, Livermore J, et al. Impact of bolus dosing versus continuous infusion of piperacillin and tazobactam on the development of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:5811–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cafini F, Aguilar L, Sevillano D, Gimenez MJ, Alou L, Fenoll A, et al. Decrease in bacterial load versus resistance selection of pneumococcal subpopulations by beta-lactam physiological concentrations over time: an in vitro pharmacodynamic simulation. Microb Drug Resist. 2008;14:13–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Tam VH, Chang KT, Zhou J, Ledesma KR, Phe K, Gao S, et al. Determining beta-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J Antimicrob Chemother. 2017;72:1421–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:4920–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Li X, Wang L, Zhang XJ, Yang Y, Gong WT, Xu B, et al. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6773–81.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC(24)/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother. 2010;65:1725–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–81.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Madaras-Kelly KJ, Ostergaard BE, Hovde LB, Rotschafer JC. Twenty-four-hour area under the concentration-time curve MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of Pseudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1996;40:627–32.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother. 2001;45:2793–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tam VH, Louie A, Deziel MR, Liu WG, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51:744–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47:1604–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Olofsson SK, Marcusson LL, Lindgren PK, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother. 2006;57:1116–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57:1654–63.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Firsov AA, Smirnova MV, Lubenko IY, Vostrov SN, Portnoy YA, Zinner SH. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother. 2006;58:1185–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Lenhard JR, Brown T, Rybak MJ, Meaney CJ, Norgard NB, Bulman ZP, et al. Sequential evolution of vancomycin-intermediate resistance alters virulence in Staphylococcus aureus: pharmacokinetic/pharmacodynamic targets for vancomycin exposure. Antimicrob Agents Chemother. 2016;60:1584–91.PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42:1411–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Dong HY, Wang X, Dong YL, Lei JE, Li H, You HS, et al. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents. 2011;38:296–300.PubMedCrossRefGoogle Scholar
  42. 42.
    Tsuji BT, Bulitta JB, Brown T, Forrest A, Kelchlin PA, Holden PN, et al. Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. J Antimicrob Chemother. 2012;67:2182–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Tsuji BT, Brown T, Parasrampuria R, Brazeau DA, Forrest A, Kelchlin PA, et al. Front-loaded linezolid regimens result in increased killing and suppression of the accessory gene regulator system of Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:3712–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48:63–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65:1984–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lepak AJ, Zhao M, VanScoy B, Taylor DS, Ellis-Grosse E, Ambrose PG, et al. In vivo pharmacokinetics and pharmacodynamics of ZTI-01 (fosfomycin for injection) in the neutropenic murine thigh infection model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.00476-17.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Docobo-Perez F, Drusano GL, Johnson A, Goodwin J, Whalley S, Ramos-Martin V, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59:5602–10.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gugel J, dos Santos Pereira A, Pignatari ACC, Gales AC. β-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:2276–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hansen GT, Zhao XL, Drlica K, Blondeau JM. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents. 2006;27:120–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Jumbe N. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest. 2003;112:275–85.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Credito K, Kosowska-Shick K, Appelbaum PC. Mutant prevention concentrations of four carbapenems against gram-negative rods. Antimicrob Agents Chemother. 2010;54:2692–5.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Diez-Aguilar M, Morosini MI, Tedim AP, Rodriguez I, Aktas Z, Canton R. Antimicrobial activity of fosfomycin–tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob Agents Chemother. 2015;59:6039–45.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Blondeau JM, Shebelski SD, Hesje CK. Killing of Streptococcus pneumoniae by azithromycin, clarithromycin, erythromycin, telithromycin and gemifloxacin using drug minimum inhibitory concentrations and mutant prevention concentrations. Int J Antimicrob Agents. 2015;45:594–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Drusano GL, Liu W, Fikes S, Cirz R, Robbins N, Kurhanewicz S, et al. Interaction of drug- and granulocyte-mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. J Infect Dis. 2014;210:1319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hesje CK, Tillotson GS, Blondeau JM. MICs, MPCs and PK/PDs: a match (sometimes) made in hosts. Expert Rev Respir Med. 2007;1:7–16.PubMedCrossRefGoogle Scholar
  56. 56.
    Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44:681–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Dahdouh E, Shoucair SH, Salem SE, Daoud Z. Mutant prevention concentrations of imipenem and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Sci World J. 2014;2014:979648.CrossRefGoogle Scholar
  58. 58.
    Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Bruins MJ, Bloembergen P, Ruijs G, Wolfhagen M. Identification and susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J Clin Microbiol. 2004;42:7–11.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Liu LG, Zhu YL, Hu LF, Cheng J, Ye Y, Li JB. Comparative study of the mutant prevention concentrations of vancomycin alone and in combination with levofloxacin, rifampicin and fosfomycin against methicillin-resistant Staphylococcus epidermidis. J Antibiot. 2013;66:709–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Allen GP, Kaatz GW, Rybak MJ. Activities of mutant prevention concentration-targeted moxifloxacin and levofloxacin against Streptococcus pneumoniae in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2003;47:2606–14.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Olofsson SK, Marcusson LL, Stromback A, Hughes D, Cars O. Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother. 2007;60:795–801.PubMedCrossRefGoogle Scholar
  63. 63.
    Breakpoint tables for interpretation of MICs and zone diameters: The European Committee on Antimicrobial Susceptibility Testing; 2017. http://eucast.org. Accessed 24 Jan 2017.
  64. 64.
    Burdet C, Pajot O, Couffignal C, Armand-Lefevre L, Foucrier A, Laouenan C, et al. Population pharmacokinetics of single-dose amikacin in critically ill patients with suspected ventilator-associated pneumonia. Eur J Clin Pharmacol. 2015;71:75–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Frippiat F, Musuamba FT, Seidel L, Albert A, Denooz R, Charlier C, et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: the PROMESSE study. J Antimicrob Chemother. 2015;70:207–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Haeseker M, Stolk L, Nieman F, Hoebe C, Neef C, Bruggeman C, et al. The ciprofloxacin target AUC:MIC ratio is not reached in hospitalized patients with the recommended dosing regimens. Br J Clin Pharmacol. 2013;75:180–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.01276-16.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2017.  https://doi.org/10.1093/jac/dkx427.CrossRefPubMedGoogle Scholar
  69. 69.
    Tankovic J, Perichon B, Duval J, Courvalin P. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 1996;40:2505–10.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Ince D, Aras R, Hooper DC. Mechanisms and frequency of resistance to gatifloxacin in comparison with ciprofloxacin in Staphylococcus aureus. Drugs. 1999;58:134–5.CrossRefGoogle Scholar
  71. 71.
    Ince D, Aras R, Hooper DC. Mechanisms and frequency of resistance to moxifloxacin in comparison with ciprofloxacin in Staphylococcus aureus. Drugs. 1999;58:132–3.CrossRefGoogle Scholar
  72. 72.
    Riesenfeld C, Everett M, Piddock LJV, Hall BG. Adaptive mutations produce resistance to ciprofloxacin. Antimicrob Agents Chemother. 1997;41:2059–60.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Morero NR, Monti MR, Argarana CE. Effect of ciprofloxacin concentration on the frequency and nature of resistant mutants selected from Pseudomonas aeruginosa mutS and mutT hypermutators. Antimicrob Agents Chemother. 2011;55:3668–76.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Drago L, De Vecchi E, Nicola L, Tocalli L, Gismondo MR. In vitro selection of resistance in Pseudomonas aeruginosa and Acinetobacter spp. by levofloxacin and ciprofloxacin alone and in combination with beta-lactams and amikacin. J Antimicrob Chemother. 2005;56:353–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Schedletzky H, Wiedemann B, Heisig P. The effect of moxifloxacin on its target topoisomerases from Escherichia coli and Staphylococcus aureus. J Antimicrob Chemother. 1999;43:31–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Baldesi O, Michel F, Guervilly C, Embriaco N, Granfond A, La Scola B, et al. Bacterial ventilator-associated pneumonia: bronchoalveolar lavage results are not influenced by dilution. Intensive Care Med. 2009;35:1210–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016;9:961–79.PubMedCrossRefGoogle Scholar
  78. 78.
    Felton TW, Hope WW, Roberts JA. How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it? Diagn Microbiol Infect Dis. 2014;79:441–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–83.PubMedCrossRefGoogle Scholar
  80. 80.
    Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, et al. Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36:332–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojenska A, Kubler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care. 2013;17:10.CrossRefGoogle Scholar
  82. 82.
    Pea F, Furlanut M, Negri C, Pavan F, Crapis M, Cristini F, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53:1863–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Galar A, Valerio M, Munoz P, Alcala L, Garcia-Gonzalez X, Burillo A, et al. Systematic therapeutic drug monitoring for linezolid: variability and clinical impact. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.00687-17.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pea F, Cojutti P, Sbrojavacca R, Cadeo B, Cristini F, Bulfoni A, et al. TDM-guided therapy with daptomycin and meropenem in a morbidly obese, critically ill patient. Ann Pharmacother. 2011.  https://doi.org/10.1345/aph.1P745.PubMedCrossRefGoogle Scholar
  85. 85.
    Allou N, Bouteau A, Allyn J, Snauwaert A, Valance D, Jabot J, et al. Impact of a high loading dose of amikacin in patients with severe sepsis or septic shock. Ann Intensive Care. 2016.  https://doi.org/10.1186/s13613-016-0211-z.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-lactam infusion in severe sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Drusano GL, Bonomo RA, Bahniuk N, Bulitta JB, VanScoy B, DeFiglio H, et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:231–42.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kashuba ADM, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother. 1999;43:623–9.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Drusano GL, Louie A. Optimization of aminoglycoside therapy. Antimicrob Agents Chemother. 2011;55:2528–31.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Layeux B, Taccone FS, Fagnoul D, Vincent JL, Jacobs F. Amikacin monotherapy for sepsis caused by pan resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:4939–41.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Roger C, Nucci B, Molinari N, Bastide S, Saissi G, Pradel G, et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents. 2015;46:21–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Roger C, Nucci B, Louart B, Friggeri A, Knani H, Evrard A, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71:208–12.PubMedCrossRefGoogle Scholar
  93. 93.
    Luyt CE, Clavel M, Guntupalli K, Johannigman J, Kennedy JI, Wood C, et al. Pharmacokinetics and lung delivery of PDDS-aerosolized amikacin (NKTR-061) in intubated and mechanically ventilated patients with nosocomial pneumonia. Crit Care. 2009.  https://doi.org/10.1186/cc8206.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sole-Lleonart C, Rouby JJ, Blot S, Poulakou G, Chastre J, Palmer LB, et al. Nebulization of antiinfective agents in invasively mechanically ventilated adults: a systematic review and meta-analysis. Anesthesiology. 2017;126:890–908.PubMedCrossRefGoogle Scholar
  95. 95.
    Labovitz E, Levison ME, Kaye D. Single-dose daily gentamicin therapy in urinary tract infection. Antimicrob Agents Chemother. 1974;6:465–70.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:E732–9.PubMedCrossRefGoogle Scholar
  97. 97.
    VanScoy BD, McCauley J, Ellis-Grosse EJ, Okusanya OO, Bhavnani SM, Forrest A, et al. Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemother. 2015;59:7170–7.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mazzei T, Cassetta MI, Fallani S, Arrigucci S, Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28:S35–41.PubMedCrossRefGoogle Scholar
  99. 99.
    Abbott IJ, Meletiadis J, Belghanch I, Wijma RA, Kanioura L, Roberts JA, et al. Fosfomycin efficacy and emergence of resistance among Enterobacteriaceae in an in vitro dynamic bladder infection model. J Antimicrob Chemother. 2017.  https://doi.org/10.1093/jac/dkx441.PubMedCrossRefGoogle Scholar
  100. 100.
    Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67:255-68.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Parker SL, Frantzeskaki F, Wallis SC, Diakaki C, Giamarellou H, Koulenti D, et al. Population pharmacokinetics of fosfomycin in critically ill patients. Antimicrob Agents Chemother. 2015;59:6471–6.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Matzi V, Lindenmann J, Porubsky C, Kugler SA, Maier A, Dittrich P, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother. 2010;65:995–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Montgomery AB, Vallance S, Abuan T, Tservistas M, Davies A. A randomized double-blind placebo-controlled dose-escalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI investigational eflow (R) inline nebulizer system in mechanically ventilated patients. J Aerosol Med Pulm Drug Deliv. 2014;27:441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50:425–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Rhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu JJ, et al. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob Agents Chemother. 2016;60:1401–10.PubMedCentralCrossRefGoogle Scholar
  107. 107.
    Aitken SL, Altshuler J, Guervil DJ, Hirsch EB, Ostrosky-Zeichner LL, Ericsson CD, et al. Cefepime free minimum concentration to minimum inhibitory concentration (fC(min)/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents. 2015;45:541–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Crandon JL, Luyt C-E, Aubry A, Chastre J, Nicolau DP. Pharmacodynamics of carbapenems for the treatment of Pseudomonas aeruginosa ventilator-associated pneumonia: associations with clinical outcome and recurrence. J Antimicrob Chemother. 2016;71:2534.PubMedCrossRefGoogle Scholar
  109. 109.
    Tam VH, Ledesma KR, Schilling AN, Lim T-P, Yuan Z, Ghose R, et al. In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagn Microbiol Infect Dis. 2009;64:427–33.PubMedCrossRefGoogle Scholar
  110. 110.
    Zinner SH, Gilbert D, Greer K, Portnoy YA, Firsov AA. Concentration–Resistance relationships with Pseudomonas aeruginosa exposed to doripenem and ciprofloxacin in an in vitro model. J Antimicrob Chemother. 2013;68:881–7.PubMedCrossRefGoogle Scholar
  111. 111.
    VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6024–31.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vanscoy B, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Forrest A, et al. Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57:4134–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Coleman K, Levasseur P, Girard AM, Borgonovi M, Miossec C, Merdjan H, et al. Activities of ceftazidime and avibactam against β-lactamase-producing enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob Agents Chemother. 2014;58:3366–72.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, et al. Comparative In vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:6137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime–avibactam resistance among patients treated for carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Boselli E, Breilh D, Rimmele T, Poupelin JC, Saux MC, Chassard D, et al. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med. 2004;30:989–91.PubMedCrossRefGoogle Scholar
  117. 117.
    Roberts DM, Liu X, Roberts JA, Nair P, Cole L, Roberts MS, et al. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit Care. 2015;19:84.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Linder KE, Nicolau DP, Nailor MD. Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: Part I gram positive bacteria. Exp Opin Drug Metab Toxicol. 2016;12:267–80.CrossRefGoogle Scholar
  119. 119.
    May F, El-Helali N, Timsit JF, Misset B. Absence of obvious link between supratherapeutic serum levels of beta lactams and clinical toxicity in ICU patients with acute renal failure treated with intermittent hemodialysis. Crit Care. 2016.  https://doi.org/10.1186/s13054-016-1394-2.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    McDonald C, Cotta MO, Little PJ, McWhinney B, Ungerer JPJ, Lipman J, et al. Is high-dose beta-lactam therapy associated with excessive drug toxicity in critically ill patients? Miner Anestesiol. 2016;82:957–65.Google Scholar
  121. 121.
    Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care. 2013.  https://doi.org/10.1186/cc12705.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA. Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? a systematic review. Ann Intensive Care. 2012.  https://doi.org/10.1186/2110-5820-2-35.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cotta MO, Gowen B, Truloff N, Bursle E, McWhinney B, Ungerer JPJ, et al. Even high-dose extended infusions may not yield desired concentrations of beta-lactams: the value of therapeutic drug monitoring. Infect Dis. 2015;47:739–42.CrossRefGoogle Scholar
  124. 124.
    Boselli E, Breilh D, Rimmele T, Guillaume C, Xuereb F, Saux MC, et al. Alveolar concentrations of pipeyacillin/tazobactam administered in continuous infusion to patients with ventilatoy-associated pneumonia. Crit Care Med. 2008;36:1500–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011;50:637–64.PubMedCrossRefGoogle Scholar
  126. 126.
    Boselli E, Breilh D, Duflo F, Saux MC, Debon R, Chassard D, et al. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med. 2003;31:2102–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by Gram-negative bacteria. Antimicrob Agents Chemother. 2009;53:3430–6.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55:3284–94.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother. 2008;61:636–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Dalfino L, Puntillo F, Mosca A, Monno R, Spada ML, Coppolecchia S, et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? a preliminary study. Clin Infect Dis. 2012;54:1720–6.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Athanassa ZE, Markantonis SL, Fousteri MZF, Myrianthefs PM, Boutzouka EG, Tsakris A, et al. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med. 2012;38:1779–86.PubMedCrossRefGoogle Scholar
  132. 132.
    Imberti R, Cusato M, Villani P, Carnevale L, Iotti GA, Langer M, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically ill patients after IV colistin methanesulfonate administration. Chest. 2010;138:1333–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Nordqvist H, Nilsson LE, Claesson C. Mutant prevention concentration of colistin alone and in combination with rifampicin for multidrug-resistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2016;35:1845–50.CrossRefGoogle Scholar
  134. 134.
    Cheah SE, Li J, Tsuji BT, Forrest A, Bulitta JB, Nation RL. Colistin and polymyxin b dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob Agents Chemother. 2016;60:3921–33.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Tsuji BT, Landersdorfer CB, Lenhard JR, Cheah SE, Thamlikitkul V, Rao GG, et al. Paradoxical effect of polymyxin b: high drug exposure amplifies resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:3913–20.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sauermann R, Rothenburger M, Graninger W, Joukhadar C. Daptomycin: a review 4 years after first approval. Pharmacology. 2008;81:79–91.PubMedCrossRefGoogle Scholar
  137. 137.
    Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006;50:3245–9.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    D’Avolio A, Pensi D, Baietto L, Pacini G, Di Perri G, De Rosa FG. Daptomycin pharmacokinetics and pharmacodynamics in septic and critically ill patients. Drugs. 2016;76:1161–74.PubMedCrossRefGoogle Scholar
  139. 139.
    Rose WE, Leonard SN, Rybak MJ. Evaluation of daptomycin pharmacodynamics and resistance at various dosage regimens against Staphylococcus aureus isolates with reduced susceptibilities to daptomycin in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 2008;52:3061–7.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Sabol K, Patterson JE, Lewis Ii JS, Owens A, Cadena J, Jorgensen JH. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother. 2005;49:1664–5.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Falcone M, Russo A, Venditti M, Novelli A, Pai MP. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2013;57:1568–76.PubMedCrossRefGoogle Scholar
  142. 142.
    Drusano GL, Johnson DE, Rosen M, Standiford HC. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993;37:483–90.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Tam VH, Louie A, Deziel MR, Liu WG, Leary R, Drusano GL. Bacterial-population responses to drug-selective pressure: Examination of garenoxacin's effect on Pseudomonas aeruginosa. J Infect Dis. 2005;192:420–8.PubMedCrossRefGoogle Scholar
  144. 144.
    van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23:422–30.PubMedCrossRefGoogle Scholar
  145. 145.
    Cazaubon Y, Bourguignon L, Goutelle S, Martin O, Maire P, Ducher M. Are ciprofloxacin dosage regimens adequate for antimicrobial efficacy and prevention of resistance? Pseudomonas aeruginosa bloodstream infection in elderly patients as a simulation case study. Fundam Clin Pharmacol. 2015;29:615–24.PubMedCrossRefGoogle Scholar
  146. 146.
    Lipman J, Scribante J, Gous AGS, Hon H, Tshukutsoane S, The Baragwanath Ciprofloxacin Study G. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. Antimicrob Agents Chemother. 1998;42:2235–9.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Zinner SH, Lubenko IY, Gilbert D, Simmons K, Zhao XL, Drlica K, et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother. 2003;52:616–22.PubMedCrossRefGoogle Scholar
  148. 148.
    Pletz MW, Bloos F, Burkhardt O, Brunkhorst FM, Bode-Boger SM, Martens-Lobenhoffer J, et al. Pharmacokinetics of moxifloxacin in patients with severe sepsis or septic shock. Intensive Care Med. 2010;36:979–83.PubMedCrossRefGoogle Scholar
  149. 149.
    MacGowan AP, Rogers CA, Holt HA, Bowker KE. Activities of moxifloxacin against, and emergence of resistance in, Streptococcus pneumoniae and Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 2003;47:1088–95.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38 Suppl 4:S341–5.PubMedCrossRefGoogle Scholar
  151. 151.
    de Lastours V, Chau F, Roy C, Larroque B, Fantin B. Emergence of quinolone resistance in the microbiota of hospitalized patients treated or not with a fluoroquinolone. J Antimicrob Chemother. 2014;69:3393–400.PubMedCrossRefGoogle Scholar
  152. 152.
    Fantin B, Duval X, Massias L, Alavoine L, Chau F, Retout S, et al. Ciprofloxacin dosage and emergence of resistance in human commensal bacteria. J Infect Dis. 2009;200:390–8.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Janoir C, Podglajen I, Kitzis MD, Poyart C, Gutmann L. In vitro exchange of fluoroquinolone resistance determinants between Streptococcus pneumoniae and Viridans streptococci and genomic organization of the parE-parC region in S-mitis. J Infect Dis. 1999;180:555–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Nicasio AM, Bulitta JB, Lodise TP, D’Hondt RE, Kulawy R, Louie A, et al. Evaluation of once-daily vancomycin against methicillin-resistant Staphylococcus aureus in a hollow-fiber infection model. Antimicrob Agents Chemother. 2012;56:682–6.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Lee DG, Murakami Y, Andes DR, Craig WA. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) cfu injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1434–41.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Charles PGP, Ward PB, Johnson PDR, Howden BP, Grayson ML. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 2004;38:448–51.PubMedCrossRefGoogle Scholar
  157. 157.
    Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother. 2006;57:699–704.PubMedCrossRefGoogle Scholar
  158. 158.
    Rosini JM, Laughner J, Levine BJ, Papas MA, Reinhardt JF, Jasani NB. A randomized trial of loading vancomycin in the emergency department. Ann Pharmacother. 2015;49:6–13.PubMedCrossRefGoogle Scholar
  159. 159.
    Zelenitsky S, Alkurdi N, Weber Z, Ariano R, Zhanel G. Preferential emergence of reduced vancomycin susceptibility in health care-associated methicillin-resistant Staphylococcus aureus isolates during continuous-infusion vancomycin therapy in an in vitro dynamic model. Antimicrob Agents Chemother. 2011;55:3627–30.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Hanrahan T, Whitehouse T, Lipman J, Roberts JA. Vancomycin-associated nephrotoxicity: a meta-analysis of administration by continuous versus intermittent infusion. Int J Antimicrob Agents. 2015;46:249–53.PubMedCrossRefGoogle Scholar
  161. 161.
    Hagihara M, Wiskirchen DE, Kuti JL, Nicolau DP. In Vitro Pharmacodynamics of Vancomycin and Cefazolin Alone and in Combination against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Dilworth TJ, Leonard SN, Vilay AM, Mercier RC. Vancomycin and piperacillin-tazobactam against methicillin-resistant Staphylococcus aureus and vancomycin-intermediate Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. Clin Ther 2014;36:1334–44.PubMedCrossRefGoogle Scholar
  163. 163.
    Climo MW, Patron RL, Archer GL. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin. Antimicrob Agents Chemother. 1999;43:1747–53.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Davis JS, Sud A, O’Sullivan MVN, Robinson JO, Ferguson PE, Foo H, et al. Combination of vancomycin and beta-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis. 2016;62:173–80.PubMedCrossRefGoogle Scholar
  165. 165.
    Boak LML, Rayner CR, Nation RL. Pharmacokinetic/Pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother. 2007;51:1287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Garcia MS, De la Torre MA, Morales G, Pelaez B, Tolon MJ, Domingo S, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA. 2010;303:2260–4.PubMedCrossRefGoogle Scholar
  167. 167.
    Roberts SM, Freeman AF, Harrington SM, Holland SM, Murray PR, Zelazny AM. Linezolid-resistant Staphylococcus aureus in two pediatric patients receiving low-dose linezolid therapy. Pediatr Infect Dis J. 2006;25:562–4.PubMedCrossRefGoogle Scholar
  168. 168.
    Zoller M, Maier B, Hornuss C, Neugebauer C, Dobbeler G, Nagel D, et al. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care. 2014;18:11.CrossRefGoogle Scholar
  169. 169.
    Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents. 2013;41:586–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Pea F, Cojutti PG, Baraldo M. A 10-year experience of therapeutic drug monitoring (TDM) of linezolid in a hospital-wide population of patients receiving conventional dosing: is there enough evidence for suggesting TDM in the majority of patients? Basic Clin Pharmacol Toxicol. 2017;121:303–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Day T, Read AF. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput Biol. 2016;12:20.CrossRefGoogle Scholar
  172. 172.
    Yadav R, Bulitta JB, Nation RL, Landersdorfer CB. Optimization of synergistic combination regimens against carbapenem- and aminoglycoside-resistant clinical Pseudomonas aeruginosa isolates via mechanism-based pharmacokinetic/pharmacodynamic modeling. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.01011-16.PubMedCentralCrossRefPubMedGoogle Scholar
  173. 173.
    Yadav R, Landersdorfer CB, Nation RL, Boyce JD, Bulitta JB. Novel Approach To Optimize Synergistic Carbapenem-Aminoglycoside Combinations against Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59:2286–98.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Drusano GL, Liu WG, Fregeau C, Kulawy R, Louie A. Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Chemother. 2009;53:2266–73.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Sime FB, Johnson A, Whalley S, Santoyo-Castelazo A, Montgomery AB, Walters KA, et al. Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemother. 2016.  https://doi.org/10.1128/AAC.01763-16.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Burgess DS, Hastings RW. Activity of piperacillin/tazobactam in combination with amikacin, ciprofloxacin, and trovafloxacin against Pseudomonas aeruginosa by time-kill. Diagn Microbiol Infect Dis. 2000;38:37–41.PubMedCrossRefGoogle Scholar
  177. 177.
    Chandrasekar PH, Crane LR, Bailey EJ. Comparison of the activity of antibiotic combinations in vitro with clinical outcome and resistance emergence in serious infection by Pseudomonas aeruginosa in non-neutropenic patients. J Antimicrob Chemother. 1987;19:321–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis. 2005;41:149–58.PubMedCrossRefGoogle Scholar
  179. 179.
    Ong DSY, van Werkhoven CH, Cremer OL, Thwaites GE, Bonten MJM. Is a randomized trial of a short course of aminoglycoside added to beta-lactam antibiotics for empirical treatment in critically ill patients with sepsis justified? Clin Microbiol Infect. 2017.  https://doi.org/10.1016/j.cmi.2017.09.020.CrossRefPubMedGoogle Scholar
  180. 180.
    Heffernan A, Lipman J, Roberts J. Is a randomized trial of a short course of aminoglycoside added to beta lactam antibiotics for empirical treatment in critically ill patients with sepsis justified? Clin Microbiol Infect. 2018.  https://doi.org/10.1016/j.cmi.2017.12.019.PubMedCrossRefGoogle Scholar
  181. 181.
    Dawis MA, Isenberg HD, France KA, Jenkins SG. In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. J Antimicrob Chemother. 2003;51:1203-–1.PubMedCrossRefGoogle Scholar
  182. 182.
    Burgess DS, Nathisuwan S. Cefepime, piperacillin/tazobactam, gentamicin, ciprofloxacin, and levofloxacin alone and in combination against Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2002;44:35–41.PubMedCrossRefGoogle Scholar
  183. 183.
    Kohanski MA, DePristo MA, Collins JJ. Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis. Molecular Cell. 2010;37:311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Wener KM, Schechner V, Gold HS, Wright SB, Carmeli Y. Treatment with fluoroquinolones or with beta-lactam-beta-lactamase inhibitor combinations is a risk factor for isolation of extended-spectrum-beta-lactamase-producing Klebsiella Species in hospitalized patients. Antimicrob Agents Chemother. 2010;54:2010–6.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Cassier P, Lallechere S, Aho S, Astruc K, Neuwirth C, Piroth L, et al. Cephalosporin and fluoroquinolone combinations are highly associated with CTX-M beta-lactamase-producing Escherichia coli: a case–control study in a French teaching hospital. Clin Microbiol Infect. 2011;17:1746–51.PubMedCrossRefGoogle Scholar
  186. 186.
    Goldstein RC, Husk G, Jodlowski T, Mildvan D, Perlman DC, Ruhe JJ. Fluoroquinolone- and ceftriaxone-based therapy of community-acquired pneumonia in hospitalized patients: The risk of subsequent isolation of multidrug-resistant organisms. Am J Infect Control. 2014;42:539–41.PubMedCrossRefGoogle Scholar
  187. 187.
    Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:2946–50.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Lenhard JR, Gall JS, Bulitta JB, Thamlikitkul V, Landersdorfer CB, Forrest A, et al. Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:719–24.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, et al. Clinically Relevant Plasma Concentrations of Colistin in Combination with Imipenem Enhance Pharmacodynamic Activity against Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula. Antimicrob Agents Chemother. 2011;55:5134–42.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Ly NS, Bulman ZP, Bulitta JB, Baron C, Rao GG, Holden PN, et al. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:2870–80.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Rigatto MH, Vieira FJ, Antochevis LC, Behle TF, Lopes NT, Zavascki AP. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother. 2015;59:6575–80.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Cai XJ, Yang Z, Dai JQ, Chen K, Zhang LD, Ni WT, et al. Pharmacodynamics of tigecycline alone and in combination with colistin against clinical isolates of multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Int J Antimicrob Agents. 2017;49:609–16.PubMedCrossRefGoogle Scholar
  193. 193.
    Diep JK, Sharma R, Ellis-Grosse EJ, Abboud CS, Rao GG. Polymyxin B and ZTI-01 (fosfomycin for injection) against KPC-producing Klebsiella pneumoniae: evaluation of activity and emergence of resistance. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.01815-17.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Walsh CC, Landersdorfer CB, McIntosh MP, Peleg AY, Hirsch EB, Kirkpatrick CM, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71:2218–29.PubMedCrossRefGoogle Scholar
  195. 195.
    Rao GG, Ly NS, Bulitta JB, Soon RL, San Roman MD, Holden PN, et al. Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies. J Antimicrob Chemother. 2016;71:3148-–56.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Rao GG, Ly NS, Diep J, Forrest A, Bulitta JB, Holden PN, et al. Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Entenza JM, Giddey M, Vouillamoz J, Moreillon P. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int J Antimicrob Agents. 2010;35:451–6.PubMedCrossRefGoogle Scholar
  198. 198.
    Schrag SJ, Pena C, Fernandez J, Sanchez J, Gomez V, Perez E, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA. 2001;286:49–56.PubMedCrossRefGoogle Scholar
  199. 199.
    Guillemot D, Carbon C, Balkau B, Geslin P, Lecoeur H, Vauzelle-Kervroedan F, et al. Low dosage and long treatment duration of beta-lactam—risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA. 1998;279:365–70.PubMedCrossRefGoogle Scholar
  200. 200.
    Ruhe JJ, Hasbun R. Streptococcus pneumoniae bacteremia: duration of previous antibiotic use and association with penicillin resistance. Clin Infect Dis. 2003;36:1132-–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Hillier S, Roberts Z, Dunstan F, Butler C, Howard A, Palmer S. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case-control study. J Antimicrob Chemother. 2007;60:92–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–98.PubMedCrossRefGoogle Scholar
  203. 203.
    Yusuf E, Van Herendael B, Verbrugghe W, Ieven M, Goovaerts E, Bergs K, et al. Emergence of antimicrobial resistance to Pseudomonas aeruginosa in the intensive care unit: association with the duration of antibiotic exposure and mode of administration. Ann Intensive Care. 2017.  https://doi.org/10.1186/s13613-017-0296-z.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, et al. Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection. N Engl J Med. 2015;372:1996–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Lee DS, Ryu JA, Chung CR, Yang J, Jeon K, Suh GY, et al. Risk factors for acquisition of multidrug-resistant bacteria in patients with anastomotic leakage after colorectal cancer surgery. Int J Colorectal Dis. 2015;30:497–504.PubMedCrossRefGoogle Scholar
  206. 206.
    Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010.  https://doi.org/10.1186/cc8872.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Sandquist M, Wong HR. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Exp Rev Clin Immunol. 2014;10:1349–56.CrossRefGoogle Scholar
  208. 208.
    Dupuy A-M, Philippart F, Péan Y, Lasocki S, Charles P-E, Chalumeau M, et al. Role of biomarkers in the management of antibiotic therapy: an expert panel review: I – currently available biomarkers for clinical use in acute infections. Ann Intensive Care. 2013;3:1–8.CrossRefGoogle Scholar
  209. 209.
    Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–35.PubMedCrossRefGoogle Scholar
  210. 210.
    Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003.PubMedCrossRefGoogle Scholar
  211. 211.
    Tang BMP, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7.PubMedCrossRefGoogle Scholar
  212. 212.
    van der Does Y, Rood PPM, Haagsma JA, Patka P, van Gorp ECM, Limper M. Procalcitonin-guided therapy for the initiation of antibiotics in the ED: a systematic review. Am J Emerg Med. 2016;34:1286–93.PubMedCrossRefGoogle Scholar
  213. 213.
    Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ. 2010.  https://doi.org/10.1136/bmj.c2096.PubMedCrossRefGoogle Scholar
  214. 214.
    Goossens H, Ferech M, Stichele RV, Elseviers M, Grp EP. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005;365:579–87.PubMedCrossRefGoogle Scholar
  215. 215.
    de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.PubMedCrossRefGoogle Scholar
  216. 216.
    Kopterides P. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–41.PubMedCrossRefGoogle Scholar
  217. 217.
    Prkno A, Wacker C, Brunkhorst FM, Schlattmann P. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock—a systematic review and meta-analysis. Crit Care. 2013.  https://doi.org/10.1186/cc13157.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med. 2011;171:1322–31.PubMedCrossRefGoogle Scholar
  219. 219.
    Schuetz P, Müller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2012;10:CD007498.Google Scholar
  220. 220.
    Nora D, Salluh J, Martin-Loeches I, Póvoa P. Biomarker-guided antibiotic therapy—strengths and limitations. Ann Transl Med. 2017.  https://doi.org/10.21037/atm.2017.04.04.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infec Dis. 2004;39:206–17.CrossRefGoogle Scholar
  222. 222.
    Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Soliman HM, Melot C, et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Oliveira CF, Botoni FA, Oliveira CR, Silva CB, Pereira HA, Serufo JC, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41:2336–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MedicineGriffith UniversityGold CoastAustralia
  2. 2.Centre for Translational Anti-Infective Pharmacodynamics, School of PharmacyThe University of QueenslandBrisbaneAustralia
  3. 3.UQ Centre for Clinical Research, Faculty of MedicineThe University of QueenslandHerstonAustralia
  4. 4.Department of Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneAustralia
  5. 5.Pharmacy DepartmentRoyal Brisbane and Women’s HospitalBrisbaneAustralia

Personalised recommendations