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Abstract The scourge of antibiotic resistance threatens

modern healthcare delivery. A contributing factor to this

significant issue may be antibiotic dosing, whereby stan-

dard antibiotic regimens are unable to suppress the emer-

gence of antibiotic resistance. This article aims to review

the role of pharmacokinetic and pharmacodynamic (PK/

PD) measures for optimising antibiotic therapy to minimise

resistance emergence. It also seeks to describe the utility of

combination antibiotic therapy for suppression of resis-

tance and summarise the role of biomarkers in individu-

alising antibiotic therapy. Scientific journals indexed in

PubMed and Web of Science were searched to identify

relevant articles and summarise existing evidence. Studies

suggest that optimising antibiotic dosing to attain defined

PK/PD ratios may limit the emergence of resistance. A

maximum aminoglycoside concentration to minimum

inhibitory concentration (MIC) ratio of[ 20, a fluoro-

quinolone area under the concentration–time curve to MIC

ratio of[ 285 and a b-lactam trough concentration of

[ 6 9 MIC are likely required for resistance suppression.

In vitro studies demonstrate a clear advantage for some

antibiotic combinations. However, clinical evidence is

limited, suggesting that the use of combination regimens

should be assessed on an individual patient basis.

Biomarkers, such as procalcitonin, may help to individu-

alise and reduce the duration of antibiotic treatment, which

may minimise antibiotic resistance emergence during

therapy. Future studies should translate laboratory-based

studies into clinical trials and validate the appropriate

clinical PK/PD predictors required for resistance suppres-

sion in vivo. Other adjunct strategies, such as biomarker-

guided therapy or the use of antibiotic combinations

require further investigation.

Key Points

Antibiotic doses for suppression of emergence of

resistance are likely to exceed doses approved for

treatment.

Antibiotic combination therapy may be one method

to minimise resistance emergence.

The role of biomarkers to reduce resistance

emergence is yet to be determined.
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1 Introduction

Antibiotic resistance is a significant global health issue,

particularly considering the association of increased mor-

tality and length of hospital admission for patients with

multi-drug-resistant (MDR) bacterial infections [1, 2]. The

global spread of bacterial resistance to last-line antibiotics

such as carbapenems and colistin threatens the return of a

pre-antibiotic era [3, 4]. This issue is likely to further

escalate given the lack of novel antibacterial drug classes

that have been developed in recent decades that can treat

infections caused by MDR pathogens [5]. Given that the

drug development process may take decades, optimising

the use of currently available antibiotics should be con-

sidered an essential tool to minimise antibiotic resistance

emergence.

Methods to maximise the utility of currently available

antibiotics include the optimisation of the dose and dura-

tion of treatment, along with the use of combination ther-

apies, which may limit resistance emergence and

potentially treat MDR or extensively drug-resistant bacte-

rial infections [6, 7]. Optimisation of antibiotic dosing can

by guided by pharmacokinetic and pharmacodynamic (PK/

PD) ratios that relate the antibiotic exposure to improved

clinical outcomes. Dosing that aims to suppress resistance

may also be potentially guided by PK/PD ratios. In vitro

and pre-clinical in vivo studies have described PK/PD

ratios required to prevent antibiotic resistance emergence.

However, exposures required for suppression of emergence

of resistance are generally higher than that needed for

clinical cure, suggesting that current dosing practices are

unlikely to ensure the prevention of antibiotic resistance

emergence [8]. A further measure to prevent resistance

emergence may include minimising the duration of ther-

apy. As clinical signs and symptoms of infection may

persist for some time after bacterial eradication has

occurred, biomarkers may enable the distinction between

those who remain ill due to persistent bacterial infection

and those who remain symptomatic after bacterial eradi-

cation [9]. Thus, biomarkers may permit reduced antibiotic

use and limit antibiotic selective pressure [10].

This article aims to describe the use of PK/PD measures

for the optimisation of antibiotic therapy with the goal of

minimising resistance emergence. It also aims to sum-

marise existing evidence regarding the role of combination

antibiotic therapy for suppression of resistance. The use of

biomarkers to guide clinical decision making with respect

to limiting the duration of antibiotic therapy and its role in

minimising resistance emergence is also discussed.

2 Methods

Published studies from 1946 until August 2017 were

identified by searching the PubMed and Web of Science

databases. Additional references were obtained by a bib-

liography and citation search of previously identified arti-

cles. Combinations of the following search terms were

used: antibiotic, sepsis, septic shock, pharmacokinetic,

pharmacodynamic, biomarker, resistant, bacteria and

combination. Only studies written in English were

reviewed. Any study describing antibiotic PK/PD ratios,

the use of biomarkers to individualise therapy and antibi-

otic combination therapy, focussing on the emergence of

resistance, were included.

3 Pharmacokinetic/Pharmacodynamic (PK/PD)
Measures for Individualisation of Antibiotic
Dosing

No objective and easily assessable clinical endpoint is

available to guide antibiotic dose titration in a timely

manner. The lack of an easily assessable and available

clinical endpoint to ensure treatment adequacy and infec-

tion resolution (the ultimate goal of therapy) has led to the

use of surrogate PK/PD ratios to guide both the design and

the individualisation of antibiotic dosing. PK/PD ratios

relate antibiotic exposure, usually relative to the minimum

inhibitory concentration (MIC) of the pathogen with either

bacterial killing or patient clinical outcomes [11]. Adjust-

ing antibiotic dosing regimens to achieve these ratios can

increase the likelihood that a patient will achieve desired

outcomes [12].

The appropriate dosing adjustment strategy depends on

the type of PK/PD ratio that best describes the clinical

efficacy and bacterial kill characteristics of the antibiotic

[13]. For concentration-dependent antibiotics, such as

aminoglycosides, the preferred PK/PD ratio relates the

free-drug maximum concentration (fCmax) to the MIC

(fCmax/MIC) [14]. For time-dependent antibiotics such as

b-lactam antibiotics, antibacterial effect is best described

by the percentage of time the free drug concentration

remains above the MIC throughout the dosing interval

(fT[MIC) [15, 16]. On the other hand, the best PK/PD ratio

for drugs with a more mixed concentration and time

dependence, such as vancomycin, relate the area under

the free-drug concentration–time curve, typically over a

24 h period, to the MIC (fAUC0–24/MIC) (Fig. 1 and

Table 1) [8, 17]. These conventional PK/PD ratios have

also been related to suppression of emergence of resis-

tance (Fig. 1) although, as for clinical efficacy, the rela-

tionships are largely based on pre-clinical studies with a
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limited number of bacterial isolates. Prospective clinical

trials are required to validate the PK/PD targets derived

from in vitro studies.

In addition to the use of conventional PK/PD ratios that

are based on the MIC of the pathogen, previous works have

suggested that dosing aiming to suppress the emergence of

resistance should preferentially be based on the mutant

prevention concentration (MPC) [48, 49]. The MPC is

derived from in vitro observation that the growth of

resistant organisms can occur at a concentration above the

MIC, but is inhibited at a threshold concentration defined

as the MPC [34, 35]. Per the MPC definition, at least one

mutation is needed for an isolate to grow in the presence of

an antibiotic at a concentration above the MIC; however,

two or more mutations conferring antibiotic resistance are

required to grow at a concentration exceeding the MPC

[34, 35]. Therefore, PK/PD ratios based on the MPC may

be an appealing antibiotic dosing target as the probability

of an organism attaining two or more mutations conferring

antibiotic resistance is unlikely [34, 35]. Thus, when

compared against increasing antibiotic concentrations, the

emergence of resistance is typically described by an

inverted ‘U’ shape (Fig. 2), where concentrations between

the MIC and the MPC, known as the mutant selection

window (MSW), promote the growth of a resistant bacte-

rial subpopulation. This suggests the dosing regimen

Fig. 1 Pharmacokinetic and pharmacodynamic parameters that

define pharmacokinetic/pharmacodynamic ratios. AUC area under

the concentration–time curve, Cmax maximum (peak) concentration,

MIC minimum inhibitory concentration, T[MIC percentage of time the

free drug concentration remains above the MIC throughout the dosing

interval

Table 1 Pharmacokinetic/pharmacodynamic ratios identified for efficacy and resistance suppression

Antibiotic class Type of PK/PD ratio and target value for clinical efficacy Type of PK/PD ratio and target value for resistance suppression

PK/PD ratio Target value References PK/PD ratio Target value References

Aminoglycoside Cmax/MIC [10 [18, 19] Cmax/MIC [20 [20]

AUC/MIC [70 [21, 22]

Penicillins fT[MIC [50% [17, 23, 24] Cmin/MICa [4.6 [25]

fT[MIC
b [100% [26]

Cephalosporins fT[MIC [70% [17, 23, 24] Cmin/MICa [3.8 [27]

Carbapenems fT[MIC [40% [17, 23, 24] Cmin/MICa [6.2 [28]

TMSW \20% [29]

Fluoroquinolones AUC/MIC [125 [30, 31]a AUC/MICa [285 [32]

fAUC/MIC [33.7 [33]b AUC/MICb [143 [34, 35]

Cmax/MIC [8 [21] AUC/MPC [22 [36]

TMSW \20% [35]

Vancomycin AUC/MIC [400 [37]b AUC/MIC [200 [38, 39]b

Linezolid AUC/MIC [80 [40, 41] AUC/MIC 31–495 [42, 43]b

fT[MIC [82.1% [40]

Daptomycin AUC/MIC 388–537 [44]c AUC/MIC [200 [38]

Colistin AUC/MIC [50 [45]c NA

Fosfomycin AUC/MIC [8.6 [46]c AUC/MIC [3136 [47]b

AUC area under the concentration–time curve over 24 h, Cmax maximum concentration during a dosing interval, Cmin minimum concentration

during a dosing interval, f free concentration, MPC mutant prevention concentration, NA no dose studied has effectively suppressed resistance

emergence, PK/PD pharmacokinetics/pharmacodynamics, T[MIC time that the concentration is maintained above the minimum inhibitory

concentration of the bacteria, TMSW time that the antibiotic concentration remains within the mutant selection window
aAgainst Gram-negative organisms
bAgainst Gram-positive organisms
cBased on animal models of bactericidal activity

Individualising Therapy to Minimise Bacterial Multidrug Resistance 623



required for suppressing the emergence of antibiotic

resistance is greater than that required for clinical cure. The

MPC has been extensively described for fluoroquinolones

[34–36, 49, 50] and to some extent for b-lactams [48, 51],

aminoglycosides [52] and macrolides [53]. However, rou-

tine measurement of the MPC for use as a dosing target is

not yet warranted as PK/PD ratios incorporating the MPC

are uncommon and present a number of additional issues

that require consideration. First, antibiotic exposure within

the MSW is likely adequate for clinical cure in immuno-

competent patients as the remaining bacterial burden is

eradicated by the immune response [54, 55]. Second, the

MPC reflects activity of the antibiotic against existing

resistant subpopulations in vitro and not necessarily against

acquired resistance mechanisms in vivo [56], although

limited evidence suggests that the MPC may be indepen-

dent of the resistance mechanism [57]. Third, the PK/PD

ratios based on the MPC required to suppress resistance are

not yet well described. Finally, the MPC requires addi-

tional culturing time of up to 72 h compared with up to

20 h for a standard MIC test [58] or between 5 and 19 h for

Vitek2 MIC methods [59]. Nonetheless, the potential util-

ity of the MPC as a guide for dose individualisation to

minimise resistance deserves further investigation. One

practical challenge is the relatively high MPC values that

may be encountered for some antibiotics with narrow

therapeutic windows, such as the aminoglycosides [52] and

vancomycin [60]. Given that the MPC is not routinely used

clinically, PK/PD ratios based on the MPC are difficult to

derive from clinical studies. In this regard, translational

in vitro studies, such as the dynamic hollow fiber infection

model (HFIM), which enables the simulation of a

human pharmacokinetic (PK) profile, thus potentially

allowing extrapolation into clinical use, provides a useful

guide for dosing that ensures suppression of resistance

emergence [61, 62].

4 What Information is Needed to Individualise
Therapy?

4.1 Bacterial Minimum Inhibitory Concentration

PK/PD ratios that guide dose individualisation are cur-

rently based on the bacteria MIC. Microbiology laborato-

ries routinely report whether bacteria are susceptible or

resistant if the bacteria MIC is below or above the clinical

breakpoint cut-off, respectively, but not necessarily the

specific pathogen MIC, which may involve a separate assay

than that used to determine susceptibility [63]. It has been

well established that a ‘susceptible’ pathogen does not

equate to the adequacy of antibiotic exposure, particularly

for isolates with MICs near the clinical breakpoint

(Table 1). This is exemplified by the decrease in estimated

probability of attaining a target Cmax/MIC of C 10 for

amikacin by nearly 60% when the pathogen MIC increases

from 4 to 8 mg/l, the European Committee on Antimicro-

bial Susceptibility Testing (EUCAST) susceptibility

breakpoint for amikacin, even when administered at a dose

of 30 mg/kg in patients with ventilator-associated pneu-

monia (VAP) [64]. Similar trends of reduced probability of

target attainment within the susceptibility range have been

described for meropenem [65], ciprofloxacin [66] and

piperacillin–tazobactam [67].

The reduced probability of target attainment when using

conventional doses against susceptible isolates with

increased MICs for current clinical PK/PD indices suggests

that doses need to be adjusted based on the measured MIC

to achieve optimal PK/PD ratios. However, the utility of

the MIC is questionable. The MIC is determined in optimal

bacterial growth conditions in the presence of static serial

twofold increasing antibiotic concentrations, which do not

represent the in vivo environment in a patient receiving

antibiotics therapeutically [68]. Moreover, the MIC is the

observed minimum antibiotic concentration to inhibit

bacterial growth. Given that a bacterial suspension is vis-

ibly turbid at an inoculum of * 1 9 107 colony-forming

units (CFU)/ml, the MIC may also be interpreted as the

concentration of antibiotic that inhibits growth below this

bacterial burden [68]. The implication is that the MIC of a

bacterial inoculum likely reflects the predominant bacterial

Fig. 2 The effect of exposure to increasing antibiotic concentrations

on the burden of resistant and susceptible bacterial populations. The

susceptible (grey) bacterial burden is rapidly reduced against an

antibiotic concentration equivalent to the minimum inhibitory con-

centration, which has little impact on the resistant (black) bacterial

subpopulation. The resistant bacterial subpopulation killing curve is

represented by the ‘inverted U-shape’, where the resistant population

is eventually killed at the antibiotic mutant prevention concentration.

CFU colony-forming units, MIC minimum inhibitory concentration,

MPC mutant prevention concentration, MSW mutation selection

window
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population and does not consider a potentially ‘resistant’ or

‘less-susceptible’ bacterial subpopulation. Therefore, tar-

gets based on the MIC for suppression of resistance

emergence, although commonly expressed as such, are of

uncertain value in determining the actual antibiotic expo-

sure required to suppress resistance emergence as the MIC

does not reflect the antibiotic exposure to prevent growth of

the ‘resistant’ bacterial subpopulation in a defined inocu-

lum. Pursuant to this concept is the use of a high starting

bacterial inoculum (* 1 9 108 CFU/ml) in many studies

that investigate bacterial resistance emergence, which

exceeds that required for MIC testing (* 1 9 105.5 CFU/

ml) [58]. It would be expected that as the total bacterial

population increases, so too does the probability of a ‘re-

sistant’ bacterial subpopulation as can be demonstrated by

the growth of bacteria in the presence of an antibiotic,

typically at concentrations equivalent to a few multiples of

the MIC, known as the mutation frequency [69–71]. For

example, if we consider a reported fluoroquinolone muta-

tion frequency of * 1 9 10-8 for Gram-negative patho-

gens, this would mean that a resistant subpopulation would

be unlikely for a standard MIC test but may result in the

emergence of resistance for some patients with high

inoculum infections such as VAP [72–76].

To make use of the MIC that describes the antibiotic–

pathogen PD, a clinician must also understand how to

adjust the antibiotic dosing regimen to optimise PK/PD

ratios to ensure optimal clinical efficacy.

4.2 Therapeutic Drug Monitoring

and pharmacokinetic Models

Knowledge of the drug PK profile within the patient at the

bedside is necessary to enable precise dose individualisa-

tion, guided by PK/PD ratios. The PK information in a

patient is obtained from antibiotic concentration measure-

ment with the use of therapeutic drug monitoring (TDM)

[77]. Critically ill patients in the intensive care unit (ICU)

have well documented altered PK related to enhanced or

impaired elimination, or increased volume of distribution

due to increased vascular permeability because of sepsis

[14, 78, 79]. These result in PK fluctuations that may

necessitate TDM-guided dose adjustment to maximise the

likelihood of achieving therapeutic concentrations. For

example, in one study, 74.2% of patients receiving b-lac-
tam antibiotic therapy required a dose increase to meet a

minimum plasma concentration (Cmin)/MIC ratio[ 4 [80].

Similarly, amikacin dose adjustment was required in 83%

of patients with sepsis, with approximately equivalent rates

of dose increases and decreases [81]. The use of TDM to

guide therapy has also been described for other antibiotics,

including the glycopeptides [82], fluoroquinolones [12],

linezolid [83] and daptomycin [84].

TDM with dose adjustment to meet key PK/PD targets

has been shown to reduce mortality in patients with

nosocomial pneumonia receiving aminoglycosides, b-lac-
tam antibiotics and/or fluoroquinolones [12]. Dose adjust-

ment with PK/PD target attainment of the prescribed

antibiotics within 3 days of treatment initiation resulted in

a lower mortality rate of 10.2% for the TDM cohort

compared with 23.6% for the control cohort, highlighting

the importance of dosing adjustment to attain PK/PD

measures [12]. Moreover, patients with severe sepsis or

septic shock achieving a target amikacin Cmax of between

60 and 80 mg/l (corresponding to a Cmax/MIC ratio of *
8) had reduced mortality compared with those who did

not; which has also been shown in the treatment of noso-

comial pneumonia [19, 85]. However, when interpreting

the MIC result, the clinician should consider the impact of

potential MIC assay error, which may be within one dilu-

tion of the determined value and thus affect the target drug

exposure [68]. The lack of prospective randomised con-

trolled trials supporting PK/PD targeted therapy, timely

availability of MIC data, and limited TDM resources for

many antibiotics have prevented widespread adoption of

PK/PD-guided therapy [86].

A plethora of software packages have been developed to

perform Bayesian dose adaptation at the bedside, whereby

a single well-timed TDM concentration can be incorpo-

rated into a population PK model together with patient-

specific clinical covariates to provide a recommended dose

that may meet key PK/PD ratios. Several packages have

been reviewed [13]. When clearly defined PK/PD ratios

associated with resistance suppression are available, dosing

software may be adjusted accordingly to predict patient-

specific dosing regimens that minimise emergence of

resistance.

5 PK/PD Measures to Minimise Resistance
Emergence and Importance of Antibiotic PK
at the Site of Infection

5.1 Aminoglycosides

PK/PD ratios of aminoglycosides required for suppression

of resistance emergence have not been well established.

When conventional PK/PD targets are used to guide

aminoglycoside dosing, resistance emergence may occur

within 12 h of the first dose [87]. Thus, it is generally

expected that higher PK/PD ratios than required for clinical

effect may be required to suppress resistance. This was

demonstrated by Tam et al. [20], who showed, using one-

compartment dynamic in vitro studies whereby bacteria

were exposed to a humanised drug concentration–time

profile, that a twice daily dosing regimen of gentamicin
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with both doses targeting a Cmax/MIC[ 30 against Pseu-

domonas aeruginosa resulted in sustained resistance sup-

pression. In contrast, single daily doses targeting a Cmax/

MIC[ 36 did not reduce resistance emergence. This dis-

crepancy is likely a function of the increased AUC/MIC

ratio in the twice daily dosing regimens, which is not

surprising given both the AUC/MIC [88] and the Cmax/MIC

[18] ratio have been correlated with clinical efficacy

(Table 1). Therefore, it is important for treatment efficacy

and minimisation of toxicity that the shape of the AUC

reflects the contribution of the concentration-dependent

bacterial killing property of aminoglycosides [88]. How-

ever, a once daily dose of amikacin with a Cmax/MIC[ 20

against Acinetobacter baumannii suppressed the emer-

gence of resistance [20]. This inter-isolate and inter-species

differences in the required aminoglycoside target concen-

tration for suppressing resistance emergence likely relates

to non-specific outer membrane changes given that ami-

kacin resistance against A. baumannii was stable with serial

passaging; however, P. aeruginosa gentamicin resistance

was transient [20]. Therefore, the dose required to suppress

resistance emergence likely varies with specific drug

within an antibiotic class and with the bacterial species or

specific isolate. In any case, these results highlight that

dosing targets at least twice that required for clinical effi-

cacy may be necessary to ensure an exposure that min-

imises resistance; however, the risk of significant

nephrotoxicity with such regimens likely precludes the

implementation into routine practice until the risk–benefit

ratio of such dosing regimens have been established [89].

Layeux et al. [90] demonstrated that one potential approach

could be the use of high-dose aminoglycoside therapy in

combination with dialysis to enable attainment of high

Cmax and AUC values but to minimise drug accumulation

and toxicity through increased extracorporeal clearance.

The ability to meet target PK/PD ratios depends on the

patient’s site of infection and mode of drug administration.

Serum concentrations achieved with intravenous high-dose

regimens of gentamicin and tobramycin (7 mg/kg), and

amikacin (30 mg/kg) are unlikely to meet the proposed PK/

PD ratios for resistance suppression [91, 92]. Even current

clinical PK/PD indices for efficacy, which are at least half

that required for resistance suppression (Table 1), may not

be met in up to 41% of patients [91, 92].

For respiratory infections, nebulised aminoglycoside

administration can attain concentrations in the epithelial

lining fluid, the proposed site of bacterial deposition in

pneumonia, up to 46-fold that of intravenous therapy [93].

This may be one method to minimise resistance emergence

while improving treatment outcomes as has been shown in

a recent meta-analysis [94]. Aminoglycosides are also

commonly used in the management of complicated urinary

tract infections (UTIs). Gentamicin achieves peak urinary

concentrations approximately 26-fold that in serum [95],

which may achieve proposed PK/PD targets for resistance

suppression; however, the impact of this on bacterial

eradication and resistance emergence has yet to be deter-

mined experimentally. Taken together, these data suggest

that the AUC/MIC and the Cmax/MIC ratio are likely key

PK/PD ratios to consider for resistance suppression, which

may be attainable in the urine with modest aminoglycoside

doses or through nebulisation for the treatment of respira-

tory infections.

5.2 Fosfomycin

Fosfomycin has been extensively used as an oral antibiotic

for treating UTIs in Europe and is now also being

increasingly used intravenously in the management of

invasive infections caused by MDR bacteria [96]. Little is

known regarding the optimal dosing strategy for clinical

cure or resistance suppression; however, murine thigh

infection models suggest an AUC/MIC ratio of[ 8.5 h-1

is the minimum exposure required for bacteriostatic

activity and mice survival, but this varies between species

and bacterial isolate [46]. The AUC/MIC ratio has been

linked with the suppression of emergence of resistance. In a

dynamic in vitro HFIM simulating an intravenous fos-

fomycin total daily dose of 24 g, either as a single dose or

administered in divided doses against an Escherichia coli

isolate with a fosfomycin MIC of 1 mg/l suppressed

resistance emergence (AUC0–24/MIC of 3136 h-1) [47]. It

has also been postulated that the time above the MIC of any

resistant subpopulation(s) is important for fosfomycin

efficacy and reduction in resistance emergence [97]. When

the fosfomycin concentration is above the MIC of the

resistant subpopulation for 33% of the dosing interval, the

bacterial concentration is reduced by 2-logs; however, the

time above the MIC of the resistant subpopulation was not

able to be quantified.

Fosfomycin is concentrated in the urine with AUC0–?

of 31,995 mg/l.h following a single oral dose of 3 g, which

is likely to exceed the AUC/MIC ratio potentially required

for resistance suppression for isolates with an MIC of less

than 8 mg/l [98]. Similar findings in a novel in vitro

dynamic simulation of bladder fosfomycin concentrations

following oral dosing show that a single oral dose of fos-

fomycin 3 g against E. coli and Enterobacter cloacae

isolates with an MIC B 4 mg/l is likely sufficient to sup-

press resistance emergence [99]. However, resistance

emergence occurred with all Klebsiella pneumoniae iso-

lates tested (MIC range 2–8 mg/l) [99].

High urinary tract concentrations, for some isolates, may

partly explain the lack of resistance emergence when used

for UTIs [100]. These exposures are unlikely to be attained

in plasma or interstitial fluid with approved/safe high-dose
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oral or intravenous therapy, which may partly explain the

rates of resistance emergence during the treatment of sys-

temic infections with monotherapy, which may occur in up

to 20% of patients with infections other than a UTI

[100–102]. Nebulised fosfomycin for the treatment of

pneumonia may be one alternate administration potentially

resulting in the required concentrations to minimise resis-

tance emergence [103].

5.3 b-Lactam Antibiotics

b-Lactam antibiotics demonstrate time-dependent bacteri-

cidal activity, and the plasma (% fT[MIC) correlates well

with clinical outcomes and bactericidal activity [17]. The

traditional fT[MIC values recommended for optimal effect

are 40, 50 and 60–70% for carbapenems, penicillins and

cephalosporins, respectively [17, 23]. However, these

proposed ratios are likely insufficient for optimal patient

outcomes, and higher PK/PD targets of as much as 100%

fT[2–59MIC have been proposed to be required for max-

imising clinical efficacy [79, 104–107]. Evidence for

resistance suppression in clinical trials is scarce. A study in

patients with VAP could not identify a statistically signif-

icant PK/PD index for carbapenems, based on either the

MIC (fT[MIC) or the MPC (fT[MPC) [108]. However,

resistance emergence was greatest (26%) in patients with

an fT[MIC of\ 40% [108].

In vitro dynamic infection models and in vivo animal

model studies have described PK/PD ratios that may sup-

press resistance emergence. Meropenem Cmin/MIC ratios

of[ 6.2 have been shown in vitro with the dynamic

in vitro HFIM as suppressing resistance emergence against

P. aeruginosa [28]. Interestingly, this ratio was reduced

to\ 1.7 when meropenem was used in combination with

tobramycin [28]. With the dynamic in vitro HFIM, Cmin/

MIC ratios of[ 3.8 have also been proposed for cefepime

and ceftazidime against P. aeruginosa and K. pneumoniae

isolates [27]. Moreover, should the concentration of mer-

openem remain within the MSW for[ 80% of the dosing

interval, resistance appears to be amplified, which is con-

sistent with the MSW hypothesis [29]. Indeed, attainment

of the accepted fT[MIC of 40% for meropenem, the tradi-

tional PK/PD ratio recommended for optimal clinical out-

comes, was associated with P. aeruginosa resistance

amplification in a murine pneumonia model, despite pro-

viding a 100% mice survival rate compared with 0% for

untreated controls [109]. Similar results have been descri-

bed by Zinner et al. [110] using the dynamic in vitro HFIM

with doripenem against P. aeruginosa.

Results appear to be similar for the penicillins against

Gram-negative bacterial pathogens. Felton et al. [25]

described that a piperacillin–tazobactam Cmin/MIC ratio of

4.6 would be required for resistance suppression with

intermittent bolus dosing against a relatively low bacterial

inoculum (4 9 105 CFU/ml) in the dynamic in vitro HFIM.

Interestingly, the target Cmin/MIC ratio is increased with

continuous infusion regimens, with a ratio of 10.4 required

for resistance suppression [25]. However, with intermittent

regimens achieving Cmin/MIC ratios of 4.6, the plasma

concentration to MIC ratio is likely to be greater than 10.4

for a substantial proportion of the dosing interval. Thus,

prolonged exposure to concentrations higher than the Cmin

of intermittent dosing may be required for resistance sup-

pression. Practically, compared with continuous infusions,

higher doses are required with intermittent regimens to

achieve the respective ratios. Furthermore, in the same

dynamic in vitro HFIM study, simulated high-dose piper-

acillin regimens of up to 17 g thrice daily administered as a

bolus or extended infusion did not result in significant

bacterial killing and was unable to suppress the emergence

of resistance against a large P. aeruginosa bacterial density

(* 8 9 108 CFU/ml) [25]. Therefore, combination

antibiotic therapy may be necessary to treat and suppress

the emergence of resistance against infections with a high

bacterial burden, such as VAP [72–76]; however, this

requires further investigation.

For the newly available b-lactam antibiotic and b-lac-
tamase inhibitor combinations, including ceftolozane–ta-

zobactam and ceftazidime–avibactam, the PK/PD indices

for resistance suppression are not yet well described. In the

dynamic in vitro HFIM, simulated doses of ceftolozane–

tazobactam 2–1 g administered every 8 h (achieving 100%

fT[MIC) did not result in growth of resistant P. aeruginosa,

but doses between 125–62.5 mg (achieving 12.5% fT[MIC)

and 1–0.5 g (achieving 100% fT[MIC) were associated with

resistance amplification [111]. This discrepancy is likely

due to the different ceftolozane AUC between the 2–1 g

(AUC0–24 1032.6 mg/l.h) and 1–0.5 g (AUC0–24 456.2 mg/

l.h), which would likely result in an elevated Cmin/MIC

ratio that has been associated with suppression of emer-

gence of resistance [27, 111]. In a similar study using

E. coli, a lower dose threshold of 750–375 mg adminis-

tered every 8 h (100% fT[MIC) resulted in resistance sup-

pression [112]. The difference between these studies is the

lower MIC of E. coli (0.25 mg/l) against ceftolozane–ta-

zobactam compared with P. aeruginosa (4 mg/l). The

exposures required of the b-lactamase inhibitor in combi-

nation products is currently unknown, but the minimum

concentration required for enzyme inhibition is likely

important, as shown by the inhibition of AmpC that

mediated cefepime resistance emergence in an HFIM study

[87]. This concept is further supported by the suppression

of bacterial regrowth when exposed to avibactam concen-

trations[ 0.28 mg/l when combined with ceftazidime

[113, 114]. Currently used ceftazidime–avibactam doses of

up to 2–0.5 g administered intravenously thrice daily in a
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cohort of 37 patients with carbapenem-resistant Enter-

obacteriaceae infections have been associated with

microbiological failures in up to 27% of patients, with 30%

of these failures likely related to the emergence of cef-

tazidime–avibactam-resistant isolates [115]. Given that

treatment was more likely to fail in patients with renal

replacement therapy and lung infections, dosing consider-

ation for target site antibiotic penetration [116] and extra-

corporeal elimination [117] are likely key factors

influencing treatment outcomes [115]. This would suggest

that dose optimisation must be considered to prevent

resistance emergence to newly developed antibiotics.

PK/PD ratios for b-lactams against Gram-positive

organisms are lacking, but a fT[MIC of 100% may be suf-

ficient against susceptible Streptococcus pneumoniae

[26, 118].

Given the lack of data describing significant toxicity

with supratherapeutic concentrations of penicillins

[119, 120] and potential impact on clinical outcomes, we

would advocate the use of an initial loading dose followed

by continuous infusions of high-dose b-lactam antibiotics

for the treatment of patients with sepsis or septic shock

requiring ICU admission [16]. However, up to 45% of

patients may not achieve a serum fT[MIC of 100% when

conventional total daily doses (e.g. piperacillin–tazobactam

16-2 g) are administered as a continuous infusion, poten-

tially due to augmented renal clearance [121–123]. The site

of infection exposure could be even lower. Currently

licensed daily doses of b-lactam antibiotics (piperacillin–

tazobactam 16-2 g, ceftazidime 8 g, meropenem 6 g)

administered via prolonged or continuous infusions for the

treatment of respiratory infections may be insufficient in up

to 40% of patients to achieve a fT[MIC of 100% at the site

of infection, in part due to highly variable lung tissue

penetration (mean/median exposure 20–40% of serum

concentrations) [65, 116, 124, 125]. Cefepime achieves

approximately equivalent concentrations in serum and the

lungs when administered as a continuous infusion, and may

be one agent where resistance suppression indices may be

met in the lung using continuous infusions of 8 g per day

[126]. However, given the wide inter-individual hetero-

geneity in b-lactam antibiotic pharmacokinetics, TDM may

enable individual dose optimisation to facilitate dosing that

minimises resistance emergence [122].

5.4 Colistin

Given the use of colistin, administered as the prodrug

colistin methanesulfonate (CMS), as a treatment for MDR

Gram-negative bacterial infections, the risk of resistance

emergence to this agent is likely very high [39]. Plasma

concentrations of colistin achieved by commonly used

doses may be far below those required for resistance

suppression. For instance, data from a murine thigh and

lung infection model suggest that A. baumannii resistance

to colistin may occur at steady-state concentrations of

[ 10 mg/l, greatly exceeding the steady-state Cmax of

2–3 mg/l attainable in critically ill patients by administer-

ing 3 million international units (MIU) of CMS thrice daily

[45, 127, 128]. However, against P. aeruginosa, smaller

doses of colistin (* 3 MIU, resulting in a Cmax of 3 mg/l)

given thrice daily may be adequate to limit the emergence

of high-level colistin resistance [128, 129]. Taken together,

these data suggest that conventional colistin dosing regi-

mens for clinical efficacy are insufficient to prevent resis-

tance emergence.

Given the pathogen-specific variations in dosing

requirements, it may be prudent to consider the highest

possible dose that can be safely administered, although

what this dose is in different patients is unclear. In a study

of 28 critically ill patients, initial loading doses of 9 MIU

of CMS followed by twice daily doses of 4.5 MIU did not

result in resistance emergence of the initial pathogen,

potentially suggesting that the immune response is central

to minimisation of resistance emergence [54, 127, 130].

Another approach to achieve high target site exposures for

respiratory infections is nebulised dose administration. In

one study, nebulised CMS administered at a dose of 1 MIU

thrice daily resulted in a median epithelial lining fluid

concentration of 6.7 mg/l (interquartile range 4.8–10.1 mg/

l) 1 h post-dose, with the respective plasma concentration

being fivefold lower [131]. Thus, doses higher than 1 MIU

should be administered to achieve adequate concentrations

in the lung, whilst limiting systemic exposure. In addition,

given the apparent lack of colistin penetration into lung

tissue following intravenous CMS administration, con-

comitant nebulised dosing appears reasonable [132]. The

poor lung penetration following intravenous CMS admin-

istration would also suggest that intravenous dose optimi-

sation for suppression of resistance against pathogens

causing pneumonia is likely to be challenging. At expo-

sures achieved by an intravenous dose, a synergistic com-

bination with other antibiotics may be necessary to

suppress emergence of resistance [133]. Alternatively, use

of other polymyxins with more predictable pharmacoki-

netics, like polymyxin B, may prove to be more valuable

agents for the treatment of MDR infections. Evidence for

this is suggested by a one-compartment dynamic in vitro

study that simulated the gradual rise of active colistin

concentrations following administration of a loading dose

of CMS 12 MIU and 4.5 MIU twice daily thereafter [134].

This was compared with polymyxin B administered as a

loading dose of 2 and 1.25 mg/kg daily thereafter against

A. baumannii [134]. Colistin, administered as CMS, did not

result in appreciable bacterial killing, compared with a

6-log reduction in bacteria following polymyxin B
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administration; however, this was not sustained, with

bacterial regrowth exceeding the baseline within 12 h

[134]. No dose of CMS or polymyxin B suppressed resis-

tance emergence [134]. Further increasing the polymyxin B

dose has been investigated as one strategy to prevent

resistance emergence. In a separate HFIM study, a simu-

lated polymyxin B loading dose of 3.33 mg/kg followed by

1.43 mg/kg twice daily thereafter increased the proportion

of the bacterial population able to grow in the presence of

10 mg/l of polymyxin B compared with a loading dose of

2.22 and 1.43 mg/kg thereafter [135]. Indeed, the propor-

tion of the resistant bacterial population was further

increased when loading doses of up to 18.3 mg/kg without

further maintenance doses were employed [135]. Taken

together, these data suggest that polymyxin B should be

used in combination with another active antibiotic to

minimise resistance emergence.

5.5 Daptomycin

Daptomycin has a spectrum of activity that includes

methicillin-resistant Staphylococcus aureus (MRSA) and

vancomycin-resistant Enterococci (VRE) [136].

In one study, the total AUC/MIC ratio of 200 (fAUC/

MIC * 20 h-1) [123], achievable with licensed doses of

6 mg/kg/day, was predicted to suppress S. aureus dapto-

mycin resistance emergence in a dynamic one-compart-

ment in vitro infection model [137, 138]. However, another

in vitro study of S. aureus endocarditis vegetations showed

threefold increases in daptomycin MICs after use of 6 mg/

kg/day, which may be related to reduced daptomycin

penetration into the vegetation [139]. Similarly, doses of

6 mg/kg/day have resulted in resistance emergence in a

clinical case report [140], potentially due to enhanced

daptomycin clearance, which can be seen in critically ill

patients [141]. At a simulated dose of 10 mg/kg/day, no

decrease in susceptibility to daptomycin was observed

in vitro for the S. aureus isolates that showed a threefold

reduction in susceptibility at a dose of 6 mg/kg/day [139].

5.6 Fluoroquinolones

One-compartment dynamic in vitro studies simulating

humanised PK profiles indicate a ciprofloxacin AUC0–24/

MIC ratio of[ 285 h-1 or a Cmax/MIC ratio of[ 24 may

be required to suppress P. aeruginosa resistance [32].

Exposures required for suppression of emergence of

resistance are approximately twofold greater than that

generally required for clinical cure (AUC0–24 of C 125

mg/l.h) in critically ill patients with predominantly respi-

ratory tract infections or Gram-negative bacterial infections

[30, 31]. The importance of a Cmax/MIC ratio for fluoro-

quinolone efficacy has also been shown in a murine

neutropenic model where a Cmax/MIC ratio of[ 20 cor-

related with mice survival, potentially by reducing the

probability of resistance emergence [142]. However, the

AUC/MIC ratio has also been shown to be an important

PK/PD ratio for suppression of emergence of resistance.

Tam et al. [143], used the dynamic in vitro HFIM and

showed that a garenoxacin AUC0–24/MIC ratio of 201 h-1

suppressed P. aeruginosa resistance emergence. This target

may be reduced for K. pneumoniae where an AUC0–24/

MIC of 67 h-1 inhibited resistance emergence, which was

also identified in a separate HFIM study [34]. Furthermore,

the percentage of the dosing interval spent within the MSW

may also be an important PK/PD ratio for emergence of

fluoroquinolone resistance. A fluoroquinolone fTMSW

of\ 20% is associated with suppression of emergence of

resistance [35]. Using this PD target, clinically used

intravenous doses of ciprofloxacin 400 mg every 12 h that

achieve the clinical target PK/PD exposure for a pathogen

with an MIC of 0.125 mg/l is unlikely to prevent sup-

pression of emergence of resistance for isolates with an

MIC of C 0.125 mg/l [66, 144, 145]. Increasing the

intravenous ciprofloxacin dose from 400 mg twice daily to

400 mg thrice daily in critically ill patients may be suffi-

cient to suppress the emergence of resistance for isolates

with an MIC of\ 0.25 mg/l [146]. At least one small

clinical trial [146] has shown this dosing regimen to be

effective and well tolerated.

Other fluoroquinolones with increased Gram-positive

antibacterial activity are available, such as levofloxacin and

moxifloxacin. It has been shown in dynamic in vitro

infection models that fluoroquinolone AUC/MIC ratios

between 143 and 431 h-1 may suppress MRSA resistance

emergence [34, 35]. Simulated clinically used moxi-

floxacin regimens of 400 mg once daily were sufficient to

attain these target PK/PD ratios [35]. In contrast, dose

increases of 90, 120 and 540% above currently used clin-

ical doses of 400, 500 and 400 mg twice daily would be

required to suppress S. aureus resistance emergence for

gatifloxacin, levofloxacin and ciprofloxacin, respectively

[35]. Lower AUC/MIC ratios of 100 h-1 have been shown

to minimise resistance emergence of S. pneumoniae

exposed to moxifloxacin [147]. Importantly, this may be

sufficient to minimise the emergence of S. pneumoniae

resistance in patients without severe sepsis or septic shock,

who may require moxifloxacin 400 mg twice daily,

depending on the MIC of the pathogen [148, 149].

An important factor regarding fluoroquinolone use is

collateral resistance [150]. Commensal organisms, such as

faecal E. coli and pharyngeal streptococcal species, may

become resistant to fluoroquinolones following systemic

therapy in up to 33% of patients, possibly related to

potential horizontal gene transfer that may propagate the

spread of resistance [151–153]. Moreover, the use of
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fluoroquinolones increases not only the risk of subsequent

fluoroquinolone resistance but also resistance to third-

generation cephalosporins, such as ceftriaxone, because of

the emergence of extended-spectrum b–lactamase (ESBL)-

producing organisms; thus, the judicial use of fluoro-

quinolones is warranted. Given that further dose increases

are unlikely to suppress the emergence of bacterial resis-

tance in the large bacterial inoculum of the faecal flora

[152], the fluoroquinolone dose should be targeted to

suppress the emergence of antibiotic resistance in the

infecting pathogen. Furthermore, consideration should be

given to the potential risks of high-dose therapy (e.g.

intravenous ciprofloxacin[ 400 mg every 8 h), which

may include cardiac dysrhythmias and confusion [14].

5.7 Glycopeptides

Vancomycin and teicoplanin are the glycopeptides cur-

rently commonly used for MRSA infections. Firsov et al.

[38] identified that a vancomycin AUC/MIC[ 200 h-1

was sufficient to suppress resistance emergence against

MRSA and methicillin-susceptible S. aureus (MSSA) in

the dynamic one-compartment in vitro infection model, an

exposure equivalent to intravenous vancomycin 1 g

administered twice daily. These results are consistent with

those of Nicasio et al. [154], whereby similar doses against

an MRSA isolate resulted in resistance suppression in a

dynamic HFIM. These results would suggest that current

dosing regimens targeting an AUC/MIC[ 400 h-1, which

is associated with improved clinical outcomes, is sufficient

for suppression of resistance emergence [37]. However,

contrasting with these results, Lenhard et al. [39] showed

that an AUC/MIC of 1800 h-1 (equivalent to 4 g admin-

istered twice daily) was required to suppress vancomycin

resistance against two MRSA isolates. The initial inoculum

differed between the studies conducted by Lenhard et al.

[39] (* 1 9 1010 CFU/ml) and Nicasio et al. [154]

(* 1 9 106 CFU/ml), suggesting that the exposure

required to suppress resistance emergence depends not only

on the specific isolate but also on the bacterial inoculum

[155].

Charles et al. [156] described clinical data supporting

these in vitro findings; they associated initial trough van-

comycin concentrations of\ 10 mg/l and high bacterial

load infections (infective endocarditis, undrained collec-

tions or infected prosthetic material) with emergence of

heterogenous vancomycin-intermediate S. aureus (hVISA)

emergence in MRSA bacteraemia. This is supported by the

lack of vancomycin resistance in a patient receiving long-

term suppressive vancomycin therapy when trough con-

centrations were maintained at[ 10 mg/l [157].

Taken together, these data suggest high-dose van-

comycin therapy is required to mitigate resistance

emergence. A loading dose of 30 mg/kg results in higher

trough concentrations than standard doses of 15 mg/kg in

the first dosing interval, as shown by Rosini et al. [158],

where 34% of patients compared with 3%, respectively,

achieved a trough concentration C 15 mg/l. Following a

loading dose, a continuous infusion with a steady-state

target concentration of 20 mg/l may be sufficient for

resistance suppression [159], depending on the pathogen

MIC, without an increased risk of nephrotoxicity [160].

Another method to limit glycopeptide resistance emer-

gence may be to reduce the infective inoculum with syn-

ergistic combinations. Combinations of vancomycin and

cefazolin [161] or piperacillin–tazobactam [162] or naf-

cillin [163] have shown rapid reductions and a trend

towards shorter clearance times of MRSA and MSSA with

high initial inoculums of * 1 9 108 CFU/ml. The effec-

tiveness of vancomycin and b-lactam combination therapy

on clinical outcomes and resistance emergence have yet to

be determined in clinical trials [164].

5.8 Linezolid

Little evidence exists regarding PK/PD ratios required for

the suppression of resistance emergence. Tsuji et al. [43],

in a dynamic HFIM, showed that simulated exposures of

600 mg twice daily dosing (AUC0–24 of 124 mg/l.h; AUC/

MIC of 112 h-1) suppressed resistance emergence against

clinical MRSA isolates, which approximates the AUC/MIC

ratio of[ 80–120 h-1 associated with improved microbi-

ological eradication [40]. In a separate one-compartment

in vitro model, lower linezolid doses of 120 mg twice

daily, 120 mg as a continuous infusion over 24 h and

30 mg as a continuous infusion over 24 h were tested

against MRSA, hVISA, VISA and VRE isolates [165].

Linezolid resistance emergence, as determined by an

increase in MIC, was observed only for the 120 mg con-

tinuous infusion regimen, whereby the linezolid concen-

tration approximated the baseline MIC of 2 mg/l for all

isolates [165]. This suggests that doses achieving a steady-

state linezolid concentration approximately equivalent to

the pathogen MIC may promote resistance emergence. In a

dynamic one compartment in vitro study investigating

vancomycin-resistant Enterococcus faecalis, Tsuji et al.

[42] showed a variable trend in the linezolid exposure

required for resistance suppression. Exposures at an AUC/

MIC ratio of[ 31 h-1 prevented resistance emergence in

all isolates without baseline resistance alleles; however,

resistance emergence could not be prevented at any expo-

sure (up to an AUC/MIC of 495 h-1) in a previously sus-

ceptible isolate with baseline resistance alleles [42]. Taken

together, these data suggest that low linezolid exposures in

isolates without baseline resistance mechanisms may result

in resistance emergence.
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Clinical data regarding linezolid resistance emergence

are limited to case reports. In 2010, a linezolid-resistant S.

aureus outbreak was identified in 12 patients in an ICU in

Spain, 11 of whom had previously received linezolid [166].

Similarly, two children receiving suppressive low-dose

linezolid therapy were also colonised with linezolid-resis-

tant S. aureus [167]. These, in part, may be related to

variable linezolid exposures. In critically ill patients

receiving linezolid 600 mg twice daily as a 15 to 60 min

infusion, only 30% of patients achieved an AUC within the

therapeutic range (AUC0–24 200–400 mg/l.h) for a pre-

sumed pathogen MIC of 2 mg/l at any point during the

study, and only 17% of patients met this target over the

4-day PK study [168]. Of concern is the potential for

adverse events, such as haematological toxicity, with a

linezolid Cmin[ 10 mg/l [169]. Given the variability in

linezolid exposures following a standard dosing regimen of

600 mg twice daily and the potential for both poor treat-

ment efficacy and toxicity, TDM has been proposed as one

method to improve linezolid dosing practices [170].

6 Impact of the Antimicrobial Regimen
and Development of Antimicrobial Resistance

6.1 Combination Therapy

The role of combination therapy has been disputed. Several

aspects of patient management intuitively support the use

of combination therapy, including extending the spectrum

of activity and synergism and minimising resistance

emergence. These concepts may not be mutually exclusive.

Mathematical models describe the amplification of resis-

tance when a baseline resistant subpopulation is present,

which may be present in a seemingly susceptible isolate

based on the MIC [50, 171]. Thus, combination therapy

may extend the spectrum of activity to the bacterial sub-

population, which may have resistance to one of the

antibiotics in the combination regimen [172, 173]. Fur-

thermore, the probability of an organism acquiring a

mutation conferring resistance to both antibiotics is sig-

nificantly less than with monotherapy [74, 174, 175],

although developing resistance to two antibiotics would be

highly problematic for drug choices. Other potentially

beneficial mechanisms relate to the specific antibiotic

combination used.

b-Lactams and aminoglycosides often have high rates of

synergistic activity against Gram-negative and Gram-pos-

itive bacterial pathogens [172, 173, 176]. However, syn-

ergistic activity has not been correlated with the

suppression of emergence of b-lactam antibiotic resistance

against P. aeruginosa in vivo [177]. These results are

consistent with a meta-analysis that did not identify a

reduced risk of resistance emergence with b-lactam and

aminoglycoside combination therapy [178]. In vitro evi-

dence contrasts with clinical trials, whereby low doses of

tobramycin and cefepime (3 mg/kg and 563 mg given

every 8 h, respectively) suppressed resistance emergence

of P. aeruginosa in a dynamic HFIM [87]. This discrep-

ancy between clinical studies and in vitro methods may be

related to the different dosing regimens used between the

meta-analysis, which primarily included studies using

multiple daily dosing regimens that may not meet key PK/

PD ratios, and the once daily dosing regimens used by

in vitro studies. Furthermore, the importance of combina-

tion therapy, as demonstrated in vitro studies, may not

extend to clinical practice because of the immune system

response, the ideal growth conditions provided in vitro that

may enhance bacterial growth and the limited bacterial

isolates studied in vitro [26]. Further work is needed to

characterise the importance of b-lactam antibiotic and

aminoglycoside combination therapy to minimise the

emergence of resistance [179, 180].

Despite potential b-lactam antibiotic and fluoro-

quinolone synergistic activity [181, 182], there is an

increased risk of emergence of ESBL-producing Enter-

obacteriaceae following fluoroquinolone therapy, which is

not seen with aminoglycoside administration, potentially

due to mutagenesis mediated by fluoroquinolone exposure

[183–185]. Following treatment with a b-lactam antibiotic

and fluoroquinolone, 15% of patients subsequently

acquired an MDR pathogen compared with 4% of patients

who received a b-lactam and macrolide combination in the

management of community-acquired pneumonia [186].

This collateral resistance suggests fluoroquinolone use

should be restricted to patients unable to tolerate b-lactams

and/or aminoglycosides.

Given the increasing emergence of resistant Gram-

negative bacteria, fosfomycin has been revived for clinical

use; however, concerns exist regarding resistance emer-

gence with monotherapy, and therefore combination regi-

mens have been tested [100]. In an HFIM study, simulating

airway exposure from nebulised doses, fosfomycin and

amikacin combination therapy reduced the resistance

emergence against P. aeruginosa that was observed with

fosfomycin monotherapy [175]. In another in vitro study,

meropenem and fosfomycin combinations following sim-

ulated intravenous dosing resulted in bacterial eradication

and associated lack of resistance emergence [47]. Clinical

studies of fosfomycin contrast with in vitro results,

whereby limited resistance emergence has been identified

with monotherapy [100]. Until further evidence is avail-

able, it may be prudent to use fosfomycin in combination

with high-dose aminoglycosides or a carbapenem to pre-

vent resistance emergence.
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Given concerns regarding colistin hetero-resistance

associated with monotherapy, use of colistin in combina-

tion therapy with another agent may reduce the emergence

of colistin resistance [187, 188]. Combination therapy with

a carbapenem, even if the isolate is resistant to the car-

bapenem, may prevent colistin resistance emergence

[189, 190] and may lead to reduced mortality rates in MDR

A. baumannii or P. aeruginosa infections [191]. Colistin in

combination with tigecycline prevented tigecycline resis-

tance emergence but not colistin resistance in vitro with

simulated serum concentrations of both agents [192].

Polymyxin B has also been used in combination studies

against MDR pathogens. Polymyxin B in combination with

fosfomycin in an HFIM suppressed the emergence of two

carbapenemase-producing K. pneumoniae isolates when a

loading dose of polymyxin B 2.5 mg/kg was administered

and followed by 1.5 mg/kg twice daily and fosfomycin 6 g

as a 1 h infusion four times daily [193]. Interestingly, the

same fosfomycin dose administered as a 3 h infusion did

not prevent resistance emergence, evident by an MIC

increase of sixfold for fosfomycin and 128-fold for poly-

myxin B [193]. This discrepancy in effect based on the

infusion duration may suggest a concentration effect,

whereby high peak fosfomycin concentrations are impor-

tant to have an effect against less-susceptible bacterial

subpopulations. Fosfomycin and polymyxin B combination

therapy results may not extend to P. aeruginosa, with time-

kill studies at clinically achievable concentrations resulting

in bacterial regrowth [194]. Polymyxin B has also been

used in combination with carbapenems. An HFIM study

investigating a combination of polymyxin B and dor-

ipenem showed that a front-loaded continuous infusion

polymyxin B regimen achieving a steady-state concentra-

tion of 5 mg/l in combination with doripenem suppressed

the emergence of polymyxin B resistance over a 10-day

course against a dense 1 9 109 CFU/ml starting inoculum

of two polymyxin B heteroresistant strains of A. baumannii

[195]. In contrast to these results, tigecycline in combina-

tion with polymyxin B has not shown consistent suppres-

sion of emergence of resistance against A. baumannii at

clinically achievable concentrations in time-kill in vitro

experiments [196]. Taken together, these results suggest

that polymyxin B or colistin should be used in combination

with a carbapenem, even if the identified bacteria are

resistant to the carbapenem. Fosfomycin may suppress

resistance emergence against Enterobacteriaceae but may

not have consistent benefit against P. aeruginosa.

Little evidence exists regarding combination therapy

against Gram-positive bacterial infections with regards to

suppression of emergence of resistance. Some data exists

with daptomycin and b-lactam antibiotic combinations.

In vitro data suggest that daptomycin and low

(0.25 9 MIC) concentrations of ampicillin may prolong

the time to emergence of daptomycin resistance in MRSA

and VRE isolates [197].

6.2 Emergence of Resistance is Correlated

with Duration of Treatment

Current evidence suggests that antimicrobial resistance

emergence correlates with the duration of treatment.

Children with respiratory tract infections receiving high-

dose (90 vs. 40 mg/kg/day, both in two divided doses) and

short-duration (5 vs. 10 days) amoxycillin therapy have

reduced subsequent carriage (24 vs. 32% for high-dose and

low-dose course, respectively) 28 days after treatment of

penicillin-resistant S. pneumoniae isolates [198]. Guillemot

et al. [199] and Ruhe and Hasbun [200] found similar

effects, where previous use of an anti-streptococcal

antibiotic at low doses for prolonged durations resulted in

subsequent resistance emergence for colonising and bac-

teraemia S. pneumoniae isolates, respectively.

Similar trends appear evident for Gram-negative bacte-

rial infections. For susceptible E. coli isolates causing

UTIs, a treatment duration of[ 7 days was associated with

resistance emergence for amoxicillin/ampicillin [odds ratio

(OR) 1.79; 95% confidence interval (CI) 1.24–2.58] and

trimethoprim (OR 4.62; 95% CI 2.73–7.82) [201]. This

effect has also been seen in the treatment of VAP. In

patients receiving 8 versus 15 days of treatment, subse-

quent infection recurrence was less likely to be due to an

MDR bacteria (42.1 vs. 62.3%; p = 0.04) [202]. For

patients requiring ICU admission with P. aeruginosa

infections, a duration of therapy[ 15 days of meropenem

(OR 10; 95% CI 19.8–551), piperacillin–tazobactam (OR

4.7; 95% CI 1.8–12.4), ciprofloxacin (OR 14.5; 95% CI

2.8–75) or ceftazidime (OR 2.6; 95% CI 1.1–6) was

associated with resistance emergence, but not for amikacin

[203]. However, unlike the other agents investigated,

meropenem resistance emergence may occur within 8 days

of treatment initiation (OR 6.3; 95% CI 2.4–16.8).

Importantly, resistance emergence following therapy may

not occur with therapy durations\ 4 days [203]. These

data suggest that therapy should involve a high dose with

the shortest possible duration of therapy, particularly with

the carbapenems. Evidence for the treatment of intra-ab-

dominal sepsis is similar to findings stated previously.

Sawyer et al. [204] did not find a reduction in the rate of

resistant organisms identified in subsequent infections,

intra-abdominal or otherwise, between patients receiving

4 ± 1 or up to 10 days of antibiotic therapy. In contrast,

patients with anastomotic leakage after colorectal cancer

surgery who received[ 5 days of antibiotics before the

leakage event were twice as likely (OR 2.48; 95% CI

1.18–5.2) to acquire an MDR pathogen in either blood or
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peritoneal fluid, suggesting the importance of the inoculum

effect for resistance emergence [205].

6.3 Biomarkers for Reducing Antibiotic Exposure

Biomarkers may assist in determining whether antibiotic

therapy is indicated and in guiding the duration of antibi-

otic treatment.

An important distinction that may reduce the use of

antibiotics is between sepsis, defined as a systemic

inflammatory response syndrome (SIRS) with a presumed

or documented infection, and SIRS secondary to a non-

infectious cause. This can be difficult based on clinical

observations alone. Many biomarkers have been reported

in both animal and human trials to diagnose sepsis, but

only procalcitonin and C-reactive protein (CRP) are cur-

rently available for widespread clinical use, albeit with

potentially limited diagnostic value [206–208].

A meta-analysis conducted by Wacker et al. [209]

showed that procalcitonin is sufficiently sensitive and

specific to distinguish between infectious and non-infec-

tious SIRS in a heterogeneous patient population in the

emergency department and the ICU. Significant hetero-

geneity existed between studies, potentially reflecting dif-

ferences in patient populations and procalcitonin cut-off

values for infection diagnosis. Uzzan et al. [210] identified

similar results in post-operative or trauma patients to dis-

tinguish SIRS from infection, evident with an area under

the receiver operator curve of 0.85. In contrast, in a sepa-

rate systematic review and meta-analysis [211], procalci-

tonin was unable to distinguish sepsis from SIRS with an

area under the receiver operator curve of 0.79. Although

these meta-analyses appear similar, differences in the

included articles and the different procalcitonin cut-off

points within the included articles in the respective meta-

analyses likely limit a direct comparison of the area under

the receiver operator curve values. Like any diagnostic test,

the clinician must integrate the pre-test probability,

involving the background prevalence and the clinical pre-

sentation of the patient when deciding on the diagnosis and

treatment course.

These decisions regarding treatment initiation are often

encountered in the emergency department. van der Does

et al. [212] conducted a systemic review and observed that

procalcitonin-guided decision making reduced antibiotic

use in adults with respiratory complaints but not in pae-

diatric patients. The impact of procalcitonin-guided

antibiotic initiation is likely underestimated given the high

rates of physician non-adherence in the included studies,

which ranged from 6 to 20% [212]. As antibiotic use is

clearly correlated with resistance emergence, at both the

individual patient [213] and the national level [214], the

use of biomarkers to guide antibiotic commencement

would be valuable.

The use of procalcitonin-based clinical algorithms has

been shown to reduce antibiotic duration in patients with

sepsis or septic shock of varying aetiologies without

increasing mortality [215–219]. Antibiotic duration

reductions with use of procalcitonin vary but can be

reduced by approximately 1 to 4 days. Despite reductions

in antibiotic durations, the effect on resistance emergence

remains largely unknown. The PRORATA trial is the only

procalcitonin trial thus far to investigate the rates of

emerging MDR bacteria taken from routine microbiologi-

cal specimens. Despite a 23% relative reduction in days of

antibiotic exposure in the procalcitonin group, no differ-

ence in the detection of MDR bacteria was observed [10].

It may be that either this reduction in duration of antibiotic

therapy is insufficient to minimise resistance emergence or

a more sensitive study design is required. Few other sepsis

biomarkers are currently available for routine clinical use.

CRP is another currently available, clinically validated

biomarker that may be useful in guiding antibiotic therapy

[220]. The sensitivity (75 vs. 88%) and specificity (67 vs.

81%) of CRP is lower than procalcitonin in the diagnosis of

bacterial infections; however, trends over time may provide

information regarding infection resolution and prognosis

[221, 222]. Despite being less specific and sensitive for

diagnosing bacterial infections, no difference in antibiotic

discontinuation rates in patients with severe sepsis have

been identified between CRP and procalcitonin [223]. No

studies have yet been conducted examining a reduction in

antibiotic use based on CRP concentrations.

Further research is required to identify any reduction in

resistance emergence with shorter antibiotic durations,

particularly for resistance mechanism carriage in the gas-

trointestinal tract and in infection recurrence with resistant

pathogens.

7 Conclusion

Current antibiotic dosing regimens that are presumably

sufficient for clinical resolution of infections are potentially

insufficient to prevent resistance emergence. However,

current PK/PD ratios that predict resistance suppression are

largely derived from in vitro studies that do not consider

immune system involvement. Future studies are required to

define antibiotic exposures required for suppression of

emergence of resistance in vivo. For a few relatively well-

studied antibiotics, the in vitro PK/PD ratios required for

suppression of emergence of resistance are consistently

high, necessitating doses that may be difficult to achieve

with conventional dosing regimens, which may result in an

unacceptable risk of toxicity. TDM-guided antibiotic dose
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individualisation is one strategy to attain these PK/PD

ratios, minimise bacterial multi-drug resistance and min-

imise potential antibiotic toxicity. Alternative dosing

strategies, such as b-lactam antibiotic continuous infusions,

should be considered to minimise total daily doses required

for attaining the higher PK/PD ratios. When possible, tar-

get site administration, such as nebulised aminoglycoside

therapy, is useful to achieve high exposures with minimal

risk of systemic toxicity. The use of combination regimens

to prevent resistance emergence is supported by in vitro

experiments but not yet by clinical evidence. Biomarkers

such as procalcitonin and CRP are helpful to guide indi-

vidualisation of the duration of antibiotic therapy, although

evidence for minimising resistance is lacking. Overall,

current knowledge on antibiotic strategies that prevent

resistance emergence is meagre. Future studies should

describe appropriate PK/PD predictors or clinical

biomarkers associated with resistance suppression and

validate their utility for individualising therapy at the

bedside.
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