Skip to main content

Advertisement

Log in

Determinants of Bee Visitation in an Economically Important Vegetable Crop Along an Agricultural Intensification Gradient

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

A Correction to this article was published on 27 December 2019

This article has been updated

Abstract

Various factors associated with agricultural intensification e.g. loss of semi-natural habitats and excessive use of chemical pesticides have been implicated as major drivers of pollinators and pollination service decline. In the developing countries, where agricultural intensification is still an ongoing process, agricultural landscape exists as a gradient of agricultural fields at various degrees of intensification. The present study looks at how factors associated with agricultural intensification impacts bee visitation on brinjal, an economically important crop, along such an agricultural intensification gradient. Bee visitation varied significantly along the gradient and was highest in the areas of low agricultural intensity. Apis cerana was the dominant visitors in areas of high agricultural intensity while for the low agricultural intensity areas Xylocopa spp. and Amegilla spp. were the dominant visitors. The visiting bee communities were also distinctly different in the high, mid and low agricultural intensity areas. Area under agriculture, non crop density and pesticide use intensity together influenced bee visitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 27 December 2019

    In the original publication, Fig. 1, corresponding legend and a sentence under the section ‘Results’ were incorrectly published.

References

  • Arena, M., and F. Sgolastra. 2014. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23 (3): 324–334.

    CAS  PubMed  Google Scholar 

  • Barton, K., 2009. MuMIn: Multi-model inference, R package version 0.12. 0. http://r-forge.r-project.org/projects/mumin/. Accessed 1 Feb 2019.

  • Basu, P., A.K. Parui, S. Chatterjee, A. Dutta, P. Chakraborty, S. Roberts, and B. Smith. 2016. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecology and Evolution 6 (19): 6983–6992.

    PubMed  PubMed Central  Google Scholar 

  • Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.

    Google Scholar 

  • Cane, J.H. 2001. Habitat fragmentation and native bees: A premature verdict? Conservation Ecology 5 (1): 3.

    Google Scholar 

  • Chakrabarti, P., S. Rana, S. Sarkar, B. Smith, and P. Basu. 2015. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie 46 (1): 107–129.

    CAS  Google Scholar 

  • Chatterjee, S., and P. Basu. 2018. Food preferences determine habitat selection at multiple scales: Implication for bird conservation in tropical forests. Animal Conservation 21 (4): 332–342.

    Google Scholar 

  • Devillers, J., A. Decourtye, H. Budzinski, M.H. Pham-Delegue, S. Cluzeau, and G. Maurin. 2003. Comparative toxicity and hazards of pesticides to Apis and non-Apis bees: A chemometrical study. SAR and QSAR in Environmental Research 14 (5–6): 389–403.

    CAS  PubMed  Google Scholar 

  • Dormann, C.F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J.R.G. Marquéz, B. Gruber, B. Lafourcade, P.J. Leitão, and T. Münkemüller. 2013. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 (1): 27–46.

    Google Scholar 

  • Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O’Connell, D.K. Ray, P.C. West, and C. Balzer. 2011. Solutions for a cultivated planet. Nature 478 (7369): 337.

    CAS  PubMed  Google Scholar 

  • Garibaldi, L.A., I. Steffan-Dewenter, R. Winfree, M.A. Aizen, R. Bommarco, S.A. Cunningham, C. Kremen, L.G. Carvalheiro, L.D. Harder, O. Afik, and I. Bartomeus. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339 (6127): 1608–1611.

    CAS  PubMed  Google Scholar 

  • Gibson, R.H., B. Knott, T. Eberlein, and J. Memmott. 2011. Sampling method influences the structure of plant–pollinator networks. Oikos 120 (6): 822–831.

    Google Scholar 

  • Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food security: The challenge of feeding 9 billion people. Science 327 (5967): 812–818.

    CAS  PubMed  Google Scholar 

  • Goulson, D. 2003. Conserving wild bees for crop pollination. Journal of Food, Agriculture and Environment 1: 142–144.

    Google Scholar 

  • Gullan, P.J., and P.S. Cranston. 2014. The insects: An outline of entomology. UK: Wiley.

  • Holland, J.M., F.J. Bianchi, M.H. Entling, A.C. Moonen, B.M. Smith, and P. Jeanneret. 2016. Structure, function and management of semi-natural habitats for conservation biological control: A review of European studies. Pest Management Science 72 (9): 1638–1651.

    CAS  PubMed  Google Scholar 

  • Kremen, C., N.M. Williams, and R.W. Thorp. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences 99 (26): 16812–16816.

    CAS  Google Scholar 

  • Kremen, C., N.M. Williams, M.A. Aizen, B. Gemmill-Herren, G. LeBuhn, R. Minckley, L. Packer, S.G. Potts, T.A. Roulston, I. Steffan-Dewenter, and D.P. Vázquez. 2007. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters 10 (4): 299–314.

    PubMed  Google Scholar 

  • Kruskal, J.B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29 (1): 1–27.

    Google Scholar 

  • Kumar, S., P.L. Prasanna, and S. Wankhade. 2010. Economic benefits of Bt Brinjal: An ex-ante assessment.

  • Kutner, M.H., C.J. Nachtsheim, and J. Neter. 2004. Applied linear regression models, 4th ed. New York: McGraw-Hill.

    Google Scholar 

  • Le Féon, V., A. Schermann-Legionnet, Y. Delettre, S. Aviron, R. Billeter, R. Bugter, F. Hendrickx, and F. Burel. 2010. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agriculture, Ecosystems & Environment 137 (1–2): 143–150.

    Google Scholar 

  • Mallinger, R.E., and C. Gratton. 2015. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. Journal of Applied Ecology 52 (2): 323–330.

    Google Scholar 

  • Mazerolle, M.J. 2017. AICcmodavg-model selection and multimodel inference based on (q) aic (c), R package.

  • Medan, D., J.P. Torretta, K. Hodara, B. Elba, and N.H. Montaldo. 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodiversity and Conservation 20 (13): 3077–3100.

    Google Scholar 

  • Moeller, D.A. 2004. Facilitative interactions among plants via shared pollinators. Ecology 85 (12): 3289–3301.

    Google Scholar 

  • Nakazawa, M. 2017. fmsb: Functions for medical statistics book with some demographic data. R package version 0.6.1. https://CRAN.R-project.org/package=fmsb. Accessed 29 July 2017.

  • Nicholls, C.I., and M.A. Altieri. 2013. Plant biodiversity enhances bees and other insect pollinators in agroecosystems: A review. Agronomy for Sustainable Development 33 (2): 257–274.

    Google Scholar 

  • Pleasants, J.M. 1980. Competition for bumblebee pollinators in Rocky Mountain plant communities. Ecology 61 (6): 1446–1459.

    Google Scholar 

  • Potts, S.G., J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W.E. Kunin. 2010. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution 25 (6): 345–353.

    Google Scholar 

  • R development core team 2013. R: A Language and Environment for Statistical Computing. Available at http://www.r-project.org/. Accessed 1 Feb 2019.

  • Rundlöf, M., H. Nilsson, and H.G. Smith. 2008. Interacting effects of farming practice and landscape context on bumble bees. Biological Conservation 141 (2): 417–426.

    Google Scholar 

  • Thompson, H.M. 2001. Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32 (4): 305–321.

    CAS  Google Scholar 

  • Thompson, H.M. 2003. Behavioural effects of pesticides in bees–their potential for use in risk assessment. Ecotoxicology 12 (1–4): 317–330.

    CAS  PubMed  Google Scholar 

  • Tscharntke, T., Y. Clough, T.C. Wanger, L. Jackson, I. Motzke, I. Perfecto, J. Vandermeer, and A. Whitbread. 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation 151 (1): 53–59.

    Google Scholar 

  • Tscharntke, T., A.M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters 8 (8): 857–874.

    Google Scholar 

  • Williams, N.M., K.L. Ward, N. Pope, R. Isaacs, J. Wilson, E.A. May, J. Ellis, J. Daniels, A. Pence, K. Ullmann, and J. Peters. 2015. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecological Applications 25 (8): 2119–2131.

    PubMed  Google Scholar 

  • Winfree, R., N.M. Williams, J. Dushoff, and C. Kremen. 2007. Native bees provide insurance against ongoing honey bee losses. Ecology Letters 10 (11): 1105–1113.

    PubMed  Google Scholar 

  • Winfree, R., N.M. Williams, H. Gaines, J.S. Ascher, and C. Kremen. 2008. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. Journal of Applied Ecology 45 (3): 793–802.

    Google Scholar 

  • Wratten, S.D., M. Gillespie, A. Decourtye, E. Mader, and N. Desneux. 2012. Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems & Environment 159: 112–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthiba Basu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Chatterjee, S., Smith, B. et al. Determinants of Bee Visitation in an Economically Important Vegetable Crop Along an Agricultural Intensification Gradient. Proc Zool Soc 73, 265–271 (2020). https://doi.org/10.1007/s12595-019-00309-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-019-00309-2

Keywords

Navigation