Skip to main content
Log in

Parieto-frontal gyrification and working memory in healthy adults

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Gyrification of the cortical mantle is a dynamic process that increases with cortical surface area and decreases with age. Increased gyrification is associated with higher scores on cognitive tasks in adults; however, the degree to which this relationship is independent of cortical surface area remains undefined. This study investigates whether regional variation in gyrification is associated with domain-general and domain-specific cognition. Our hypothesis is that increased local gyrification confers a functional advantage that is independent of surface area. To quantify regional gyrification, we computed the local gyrification index (LGI) at each vertex and averaged across a bilateral parietal-frontal region associated with general intelligence and reasoning (Jung and Haier 2007). A sample of 48 healthy adults (24 males/24 females; ages 18–68 years) completed a high-resolution 3 T T1-weighted MRI and standardized administration of the Wechsler Adult Intelligence Scale (WAIS). We found a positive correlation between cortical gyrification and working memory, which remained significant after controlling for cortical surface area. Results suggest that a higher degree of local cortical folding confers a functional advantage that is independent from surface area and evident for more dynamic or “fluid” cognitive processes (i.e., working memory) rather than over-learned or “crystallized” cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allman, J. M. (1999). Evolving brains (pp. 116–156). New York: Freeman WH.

    Google Scholar 

  • Buzsáki, G. (2006). Rhythms of the brain (pp. 36–7). New York: Oxford UP.

    Book  Google Scholar 

  • Buzsáki, G., Geisler, C., Henze, D. A., & Wang, X. J. (2004). Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends in Neuroscience, 27, 186–193.

    Article  Google Scholar 

  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1.

    Article  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 311, 79–83.

    Article  Google Scholar 

  • Docherty, A. R., Hagler Jr., D. J., Panizzon, M. S., Neale, M. C., Eyler, L. T., Fennema-Notestine, C., et al. (2015). Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability? NeuroImage, 106, 154–160.

    Article  PubMed  Google Scholar 

  • Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27, 419–451.

    Article  CAS  PubMed  Google Scholar 

  • Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 1664–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97, 11050–11055.

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.

    Article  PubMed  Google Scholar 

  • Gautam, P., Anstey, K. J., Wen, W., Sachdev, S. P., & Cherbuin, N. (2015). Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults. Behavioral Brain Research, 287, 331–339.

    Article  Google Scholar 

  • Herculano-Houzel, S., Mota, B., & Lent, R. (2006). Cellular scaling rules for rodent brains. Proceedings of the National Academy of Sciences, 03(32), 12138–12143.

    Article  Google Scholar 

  • Herculano-Houzel, S., Collins, C. E., Wong, P., & Kaas, J. H. (2007). Cellular scaling rules for primate brains. Proceedings of the National Academy of Sciences, 104(9), 3562–3567.

    Article  CAS  Google Scholar 

  • Hof, P. R., Chanis, R., & Marino, L. (2005). Cortical complexity in cetacean brains. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, 287, 1142–1152.

    Article  Google Scholar 

  • Jung, R. H., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral Brain Science, 30, 135–154.

    Article  Google Scholar 

  • Kaas, J. H. (2009). Cerebral Fissure Patterns (pp. 739–800). Oxford: Elsevier.

    Google Scholar 

  • Larkum, M. E., Senn, W., & Lüscher, H.-R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereral. Cortex, 14, 1059–1070.

    Article  Google Scholar 

  • Li, G., Wang, L., Shi, F., Lyall, A. E., Lin, W., Gilmore, J. H., & Shen, D. (2014). Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. Journal of Neuroscience, 34(12), 4228–4238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luders, E., Narr, K. L., Bilder, R. M., Szeszko, P. R., Gurbani, M. N., Hamilton, L., et al. (2008). Mapping the relationship between cortical convolution and intelligence: Effects of gender. Cerebral Cortex, 18, 2019–2026.

    Article  PubMed  Google Scholar 

  • Moore, M. J., Knowlton, A. R., Kraus, S., McLellan, W. A., & Bonde, R. K. (2004). Morphometry, gross morphology, and available histopathology in North Atlantic right whale (Eubalaena glacialis) mortalities. Journal of Cetacean Research and Management, 6, 199–214.

    Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 1, 97–113.

    Article  Google Scholar 

  • Pillay, P., & Manger, P. R. (2007). Order-specific quantitative patterns of cortical gyrification. European Journal of Neuroscience, 25, 2705–2712.

    Article  PubMed  Google Scholar 

  • Pucak, M., Levitt, J., Lund, J., & Lewis, D. (1996). Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. Journal of Comparative Neruology, 376, 614–630.

    Article  CAS  Google Scholar 

  • Ronan, L., & Fletcher, P. C. (2015). From genes to folds: A review of cortical gyrificaiton theory. Brain Structure and Function, 220(5), 2475–2483.

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Garrido, P., Pérez-De-Manzo, F., Porrero, C., Galazo, M. J., & Clascá, F. (2009). Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cerebral Cortex, 19, 2380–2395.

    Article  PubMed  Google Scholar 

  • Schaer, M., Caudra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., & Thiran, J.-P. (2008). A surface-based approach to quantify local cortical gyrification. IEEE Transactions on Medical Imaging, 27, 161–170.

    Article  PubMed  Google Scholar 

  • Schaftenaar, W., & Hildebrandt, T. (2006). Veterinary guidelines for reproduction-related management in captive female elephants. Elephant TAG Veterinary Advisors.

    Google Scholar 

  • Striedter, G. F., Srinivasan, S., & Monuki, E. S. (2015). Cortical folding: When, where, how and why? Annual Review of Neuroscience, 38, 291–307.

    Article  CAS  PubMed  Google Scholar 

  • Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313–318.

    Article  CAS  PubMed  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale – third edition. San Antonio: Pearson.

  • Wechsler, D. (2008). Wechsler Adult Intelligence Scale – fourth edition. San Antonio: Pearson.

  • Welker, W. (1990). Why does the cerebral cortex fissure and fold? Cerebral Cortex, 8, 3–136.

    Article  Google Scholar 

  • Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology (Berlin), 179, 173–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Green.

Ethics declarations

Funding

The study was funded by generous support from Finding a Cure for Epilepsy and Seizures (FACES).

Conflict of interest

Sophie Green declares that she has no conflict of interest. Orrin Devinsky declares that he has no conflict of interest. Karen Blackmon declares that she has no conflict of interest. Jonathan DuBois declares that he has no conflict of interest. Xiuyuan Wang declares that he has no conflict of interest. Eric Halgren declares that he has no conflict of interest. Thomas Thesen declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, S., Blackmon, K., Thesen, T. et al. Parieto-frontal gyrification and working memory in healthy adults. Brain Imaging and Behavior 12, 303–308 (2018). https://doi.org/10.1007/s11682-017-9696-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9696-9

Keywords

Navigation