Skip to main content

Advertisement

Log in

Fabrication of a Porous and Formable Ceramic Composite Bone Tissue Scaffold at Ambient Temperature

  • Topical Collection: Biodegradable Materials for Medical Applications II
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Broken or diseased bone tissue requires a multitude of repair strategies ranging from autografts, to allografts, to synthetic bone grafts. Herein we describe a fabrication approach to create all-ceramic resorbable porous scaffolds for bone tissue repair in the absence of traditional consolidation techniques for ceramics—a technique that has potential for in situ use in operating rooms, or in field hospitals. The room temperature and pressure process utilizes a reaction with a liquid ceramic precursor to form a silicate-glass binder phase to consolidate bioactive glass frit particles and make a formable paste. This formable paste is designed to be applied directly to a bone defect, hardening in situ to become a rigid scaffold and acting as a bone ‘spackling’ paste. Characterization of the composite scaffolds is evaluated with respect to design specifications required in biomedical implant materials, namely: formability, geometric stability, porosity, and load-bearing capacity. Of the fabricated scaffolds, the composite scaffold with 7.4 vol pct sodium silicate binder was found to have the most dispersed, well distributed, and largest amount of open porosity (44 pct), average compressive strength of 1.3 MPa (with the least amount of variability), surface area to volume ratio of 33 mm−1 (slightly greater than trabecular bone), and excellent geometric stability. Results of this study indicate that the developed fabrication method should be further explored for synthetic bone graft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. L. Hench: Amer. Ceram. Soc. Bull., 2005, vol. 84, no. 9, pp. 18-21.

    CAS  Google Scholar 

  2. J. Wilson, A. Yli-Urpo and H. Risto-Pekka: An Introduction to Bioceramics, World Scientific, Singapore, 1993, pp. 63-74.

    Google Scholar 

  3. J. R. Jones: J. Euro. Ceram. Soc., 2009, vol. 29, pp. 1275-1281.

    CAS  Google Scholar 

  4. S. Hu, J. Chang, M. Liu and C. Ning (2009) J. Mat. Sci. 20(1): 281-6.

    CAS  Google Scholar 

  5. F. A. Al-Mulhim, M. A. Baragbah, M. Sadat-Ali, A. S. Alomran and M. Q. Azam: Int. Surg., 2014, vol. 99, pp. 264-268.

    Google Scholar 

  6. A. Mombelli and N. P. Lang (1998) Periodontology, 17(1), 63-76.

    CAS  Google Scholar 

  7. A. Bachoura, T. G. Guitton, R. M. Smith, M. S. Vrahas, D. Zurakowski and D. Ring: Clin. Ortho. Rel. Res., 2011, vol. 469, no. 9, pp. 2621-2630.

    Google Scholar 

  8. M. Bhola, A. L. Neely and S. Kolhatkar: J. Prosth., 2008, vol. 17, no. 7, pp. 576-81.

    Google Scholar 

  9. M. Ahn, K. An, J. Choi and D. Sohn: Imp. Dent., 2004, vol. 13, no. 4, pp. 367-72.

    Google Scholar 

  10. [S. Tajbakhsh and F. Hajiali: Mat. Sci. Eng. C, 2017, vol. 70, pp. 897-912.

    CAS  Google Scholar 

  11. S. M. Olhero, H. R. Fernandes, C. F. Marques, B. C. Silva and J. M. Ferreira: J. Mat. Sci., 2017, vol. 52, pp. 12079-88.

    CAS  Google Scholar 

  12. S. Bose, D. Ke, H. Sahasrabudhe and A. Bandyopadhyay: Prog. Mat. Sci., 2018, vol. 93, pp. 45-111.

    Google Scholar 

  13. M. Wang: Biomaterial, 2003, vol. 24, pp. 2133-51.

    CAS  Google Scholar 

  14. W. Leenakul, T. Tunkasiri, N. Tongsiri, K. Pengpat and J. Ruangsuriya: Mat. Sci. Eng. C, 2016, vol. 61, pp. 695-704.

    CAS  Google Scholar 

  15. J. R. Jones, L. M. Ehrenfried and L. L. Hench: Biomat., 2006, vol. 27, pp. 964-973.

    CAS  Google Scholar 

  16. J. R. Jones: Acta Biomat., 2013, vol. 9, pp. 4457-4486.

    CAS  Google Scholar 

  17. S. Diermann, M.Y. Lu, M. Dargusch, L. Grondahl, H. Huang: J. Biomed. Mater. Res. B, 2019, vol. 107B, pp. 3596-2610.

    Google Scholar 

  18. S. , M.Y. Lu, Y.T Zhao, L.J. Vandi, M. Dargusch, H. Huang (2018) J. Mech. Behav. Biomed. 84(1):151-160.

    CAS  Google Scholar 

  19. T. Kokubo, H.-M. Kim and M. Kawashita: Biomaterials, 2003, vol. 24, pp. 2161-2175.

    CAS  Google Scholar 

  20. K. Kawanabe, H. Lida, Y. Matsusue, H. Nishimatsu, R. Kasai and T. Nakamura: Acta Orthop. Scand.. 1998, vol. 69, no. 3, pp. 237-242.

    CAS  Google Scholar 

  21. M. N. Rahaman, D. E. Day, B. S. Bal, Q. Fu, S. B. Jung, L. F. Bonewald and A. P. Tomsia: Acta Biomat., 2011, vol. 7, pp. 2355-2373.

    CAS  Google Scholar 

  22. D. J. Hulsen, N. A. van Gestel, J. A. Geurts and J. J. Arts: Management of Periprosthetic Joint Infections (PJIs), In: J. A. A. J. Geurts, (Ed.), Elsevier, Duxford, 2017, pp. 69–80.

  23. Q. Z. Chen, I. D. Thompson and A. R. Boccanccini: Biomaterials, 2006, vol. 27, pp. 2141-2425.

    Google Scholar 

  24. J. Sandberg and M. Alvesson: Organization, 2011, vol. 18, no. 1, pp. 23-44.

    Google Scholar 

  25. G. Lagaly, W. Tufar, A. Minihan and A. Lovell: Ullman’s Encyclopedia of Industrial Chemistry, vol. 32, Wiley-VCH Verlag, Weinheim, 2012, pp. 509-572.

    Google Scholar 

  26. V. S. Komlev, J. V. Rau, M. Fosca, A. S. Fomin, A. N. Gurin, S. M. Barinov and R. Caminiti: Mat. Lett., 2012, vol. 73, pp. 115-118.

    CAS  Google Scholar 

  27. H. Zhou, T. J. Luchini, S. Bhaduri and L. Deng: Mat. Tech., 2015, vol. 30, pp. 229-236.

    Google Scholar 

  28. S. M. Kenny and M. Buggy (2003) J. Mat. Sci, 14(11), 923-938.

    CAS  Google Scholar 

  29. A. L. Oliveira, P. B. Malafaya and R. L. Reis: Key Eng. Mat., 2001, Vols. 192-195, no. Bioceramics 13, pp. 75-78.

    Google Scholar 

  30. J. G. Blumberg and W. L. Schleyer: Soluble Silicates, vol. 194, J. Falocone Jr., Ed., American Chemical Society, Washington, 1982, pp. 31–47.

  31. W. L. Schleyer and J. G. Blumberg: Soluble Silicates, vol. 194, J. Falcone Jr., Ed., American Chemical Society, Washington, 1982, pp. 49–69.

  32. J. D. Willey: Soluble Silicates, vol. 194, J. Falcone Jr., Ed., American Chemcial Society, Washington, 1982, pp. 149–64.

  33. F. Baino, G. Novaira and C. Vitale-Brovarone: Front. Bioeng. Biotech., 2015, vol. 3, pp. 1-17.

    Google Scholar 

  34. P. Chocolata, V. Kulda and V. Babuska: Materials, 2019, vol. 12, no. 568, pp. 1-25.

    Google Scholar 

  35. H. Qu, H. Fu, Z. Han and Y. Sun: RSC Adv., 2019, vol. 9, no. 45, pp. 26252-26262.

    CAS  Google Scholar 

  36. S. V. Dorozhkin: J. Func. Biomat., 2010, vol. 1, pp. 22-107.

    CAS  Google Scholar 

  37. L. L. Hench: J. Amer. Ceram. Soc., 1998, vol. 81, no. 7, pp. 1705-1728.

    CAS  Google Scholar 

  38. N. Zitmann and T. Berglundh: Periodont., 2008, vol. 35, no. s8, pp. 268-291.

    Google Scholar 

  39. F. Baino, S. Hamzehlou and S. Kargozar: J. Func. Biomat., 2018, vol. 9, no. 25, pp. 1-26.

    Google Scholar 

  40. M. T. Tognonvi, S. Rossignol and J. P. Bonnet (2011) J. Sol-Gel Sci. Tech., 58(3), 625-635.

    CAS  Google Scholar 

  41. G. M. Nelson, J. A. Nychka and A. G. McDonald (2011) J. Therm. Spray Tech., 20(6), 1339-1351.

    CAS  Google Scholar 

  42. ASTM International, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, D7012-14, ASTM International, West Conshohocken, 2017.

    Google Scholar 

  43. D. V. Atterton: AFS Trans., 1956, vol. 64, pp. 14-18.

    Google Scholar 

  44. Reprorubber Brochure REP-0409, Flexbar Machine Corporation Islandia, NY, 2017.

  45. L. C. Gerhardt and A. R. Boccaccini: Materials, 2010, vol. 3, no. 7, pp. 3867-3910.

    CAS  Google Scholar 

  46. N. L. Fazzalari, D. J. Crisp and B. Vernon-Roberts: J. Biomech., 1989, vol. 22, no. 8/9, pp. 901-910.

    CAS  Google Scholar 

  47. R. Marcus, D. W. Dempster, J. A. Cauley and D. Feldman: Osteoporosis, 4th ed., Elsevier Academic Press, Waltham, OA, 2013, pp. 434.

    Google Scholar 

  48. C. J. McMahon: Structural Materials: A Textbook with Animations, Merion Books, Philadelphia, PA, 2004, pp. 407-414.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2014-05419). The authors thank Mr. Ereddad Kharraz in the Faculty of Agricultural, Life, and Environmental Sciences for performing gas pycnometry, Mr. Piotr Nicewicz in the Faculty of Engineering for performing optical particle size analysis, and Dr. Michael Doschak in the Faculty of Pharmacy and Pharmaceutical Sciences for assistance in collection of micro-CT data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nychka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 01, 2019.

Appendix: Pycnometry Data Analysis

Appendix: Pycnometry Data Analysis

Assuming that the minimum volume that a composite scaffold could occupy would equal the combined volume of the 45S5 frit (VBAG) and solid sodium silicate (VWG,s), it then follows that the pycnometry volume measurement of a specimen with 100 pct open porosity would equal this ‘minimum volume’ value (Vmin). If the measured volume of a specimen is greater than this minimum volume, it is assumed that the additional volume is exclusively comprised of closed pores.

The minimum volume values were calculated as follows:

$$ \begin{array}{*{20}c} {V_{\hbox{min} } = V_{\text{BAG}} + V_{\text{WG,s}} } \\ \end{array} $$
(A1)
$$ \begin{array}{*{20}c} {V_{\text{BAG}} = \frac{{\left( {m_{{{\text{tested}}\,{\text{specimen}}}} } \right) \cdot \left( {{\text{wt\, pct}} {\text{BAG}}_{\text{set}} } \right)}}{{\rho_{\text{BAG}} }}} \\ \end{array} $$
(A2)
$$ \begin{array}{*{20}c} {V_{\text{WG, s}} = \frac{{\left( {m_{{{\text{tested}}\,{\text{specimen}}}} } \right) \cdot \left( {{\text{wt \,pct}} WG_{\text{set}} } \right)}}{{\rho_{\text{WG, s}} }}} \\ \end{array} $$
(A3)
$$ \begin{array}{*{20}c} {{\text{wt pct BAG}}_{\text{set}} = 1 - {\text{wt pct WG}}} \\ \end{array}_{\text{set}} $$
(A4)
$$ \begin{array}{*{20}c} {{\text{wt pct WG}}_{\text{set}} = \frac{{m_{\text{WG,s}} }}{{m_{WG,s} + m_{\text{BAG}} }}} \\ \end{array} $$
(A5)
$$ \begin{array}{*{20}c} {m_{\text{WG, s}} = \left( {m_{\text{WG, l}} } \right) \cdot \left( {{\text{mass}}\,{\text{loss}}\,{\text{factor}}} \right)} \\ \end{array} $$
(A6)
$$ \begin{array}{*{20}c} {{\text{mass}}\,{\text{loss}}\,{\text{factor}} = \left( {1 - \frac{{m_{\text{WG,l}} - m_{\text{WG,s}} }}{{m_{\text{WG,l}} }}} \right)} \\ \end{array} $$
(A7)

Bioactive glass density (ρBAG), set sodium silicate density (ρWG,s), and the mass loss factor were determined empirically via gas pycnometry.

The specimen mass (mtested specimen) used in this calculation was the mass measured at the time of pycnometry analysis, as opposed to the combined weight of the measured feedstock materials. This convention accounted for the effect of the material loss—during the manufacturing process, residual paste adheres to the weigh boat, the bulb of the pipette used for mixing, and to gloves used to handle the specimen. Additionally, the friable nature of the set specimen can lead to loss of solid material during handling after setting.

Assumptions:

  1. (1)

    The material lost during manufacturing and handling was assumed to be lost proportionally; i.e., any lost material has the same composition as the bulk of the specimen. Realistically, the unset waterglass wets to the weigh boat, and it is likely that this wetting leads to a disproportionate loss of waterglass. It follows that compositions with lower amounts of waterglass may be more affected by this disproportionate loss.

  2. (2)

    At the time of analysis, the sodium silicate was assumed to be fully set, and assumed to not densify or shrink further. The time elapsed between manufacturing and analysis varied between specimen groups, and may have had an effect on the degree to which to sodium silicate densified. To mitigate this variability, kinetics studies examining the rate of mass loss during setting of sodium silicate were used to confirm the stability of the specimens prior to gas pycnometry analysis. As shown in Figure A1 in the Appendix, sodium silicate in air reaches half of its maximum normalized mass loss (i.e., setting reaction of binder is 50 pct complete) within 13.76 hours (parameter B in the curve fit). All pycnometry samples were allowed to set for a minimum of 288 hours before testing; as indicated on Figure A1 in the Appendix by the vertical dashed line, this setting time allowed the binder phase to reach the stable asymptotic region of the kinetic curve (95 pct level of maximum normalized mass loss).

    Fig. A1
    figure 14

    Kinetics data and curve fit for the mass loss during setting of bulk aqueous sodium silicate in air at 294 K (21 °C). The curve fit (red line) is based on the Michaelis–Menten equation describing a reaction as a function of concentration of reactants which decreases in time (as the reactants are consumed—much like is occurring in the setting of sodium silicate). The horizontal dashed line represents the asymptotic value of the mass loss (parameter A) and the vertical dashed line represents the setting time used for pycnometry specimens in air. Parameter B in the curve fit represents the time to reach half the maximal mass loss. Bulk solution kinetics were used as a conservative control due to the lowest SA/V ratio as compared to the total internal area of the liquid spread between frit particles in the composite

  3. (3)

    The measured densities of solid sodium silicate and 45S5 bioactive glass are assumed to be representative of the densities of these constituents in the composite specimens. In actuality, the geometry of the setting waterglass was different (i.e., droplets on parafilm vs. contained within a composite scaffold), which may have affected the measured density. Additionally, the total set time for the sodium silicate specimen was different than the total set time for each composite specimen.

  4. (4)

    It is assumed that no reaction occurs between the two constituents that would alter the density of either constituent.

  5. (5)

    The sodium silicate-only specimen that was analyzed was assumed to have no closed pores; closed pores would alter the empirically determined ρWG,s value.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzzo, C.M., Nychka, J. Fabrication of a Porous and Formable Ceramic Composite Bone Tissue Scaffold at Ambient Temperature. Metall Mater Trans A 51, 6110–6126 (2020). https://doi.org/10.1007/s11661-020-05924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05924-9

Navigation