Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

  • N. Srinivasan
  • B. Sunil Kumar
  • V. Kain
  • N. Birbilis
  • S. S. Joshi
  • P. V. Sivaprasad
  • G. Chai
  • A. Durgaprasad
  • S. Bhattacharya
  • I. Samajdar
Article
  • 39 Downloads

Abstract

Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

Nomenclature

F

Feed rate (mm/min)

ns

Spindle speed (rpm)

td

Depth of cut (mm)

ε

Strain

έ

Strain rate (s−1)

α

Clearance /rake angle (deg)

αn

Normal clearance /rake angle (deg)

D

Diameter of the tool (mm)

tc

Chip thickness (or) cutting ratio (deg)

ω

Helix angle (deg)

ηs

Shear flow angle (deg)

ηc

Chip flow angle (deg)

γn

Normal rake angle (deg)

Vs

Shear velocity component along the shear plane (mm/min)

Nc

Rotation of spindle speed (rpm)

фn

Shear plane angle (deg)

So

Feed per tooth (mm)

V

Cutting speed (mm/min)

Y

Shear band spacing (μm)

Notes

Acknowledgments

The authors would like to acknowledge Sandvik and DST for partial funding, and BRNS (Board of Research of Nuclear Sciences, India) for support. Support from the National Facility of Texture and SAIF (Sophisticated Analytical Instrumentation Facility) and CoEST (center of excellence in steel technology) of IIT Bombay are also acknowledged.

References

  1. 1.
    S. Ghosh, V. Kain (2010) Mater. Sci. Eng. A. 527:679–683.CrossRefGoogle Scholar
  2. 2.
    A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice and K.J. Mottershead: Corros. Sci., 2011, vol. 53, pp. 3398–3415.CrossRefGoogle Scholar
  3. 3.
    S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar and I. Samajdar: Mater. Charact., 2012, vol. 72, pp. 68–76.CrossRefGoogle Scholar
  4. 4.
    J. Gravier, V. Vignal and S. Bissey-Breton: Corros. Sci.,2012, vol. 61, pp. 162–170.CrossRefGoogle Scholar
  5. 5.
    G.T. Burstein and P.C. Pistorius: Corrosion., 1995, vol. 51, pp. 380–385.CrossRefGoogle Scholar
  6. 6.
    T. Hong and M. Nagumo: Corros. Sci., 1997, vol. 39, pp. 1665–1672.CrossRefGoogle Scholar
  7. 7.
    S. Ghosh and V. Kain: J. Nucl. Mater., 2010, vol. 403, pp. 62–67.CrossRefGoogle Scholar
  8. 8.
    G. Hinds, L. Wickström, K. Mingard and A. Turnbull: Corros. Sci., 2013, vol. 71, pp. 43–52.CrossRefGoogle Scholar
  9. 9.
    P.G. Benardos and G.-C. Vosniakos: Int. J. Mach. Tools Manuf., 2003, vol. 43, pp. 833–844.CrossRefGoogle Scholar
  10. 10.
    S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal and S.K. Baveja, Mater. Des., 2011, vol. 32, pp. 3823–3831.CrossRefGoogle Scholar
  11. 11.
    Y.K. Chou: J. Mater. Process. Technol., 2002, vol. 124, pp. 171–177.CrossRefGoogle Scholar
  12. 12.
    J. Kuniya, I. Masaoka, R. Sasaki, S. Kirihara (1980) J. Mater. Energy. Syst. 1: 30–40.CrossRefGoogle Scholar
  13. 13.
    S. Jeelani and J.A. Bailey: J. Eng. Mater. Technol., 1986, vol. 108, pp. 93–98.CrossRefGoogle Scholar
  14. 14.
    D.Y. Jang, T.R. Watkins, K.J. Kozaczek, C.R. Hubbard and O.B. Cavin: Wear., 1996, vol. 194, pp. 168–173.CrossRefGoogle Scholar
  15. 15.
    V. García Navas, O. Gonzalo and I. Bengoetxea: Int. J. Mach. Tools Manuf., 2012, vol. 61, pp. 48–57.CrossRefGoogle Scholar
  16. 16.
    M.C.Shaw: “Metal Cutting Principles”, second ed, Oxford University Press, New York, 2005.Google Scholar
  17. 17.
    Z. Wang, M. Rahman: “High speed machining” in: M.S.J. Hashmi (Ed.), Compr. Mater. Process., Elsevier, Ireland, 2014: pp. 221–253.Google Scholar
  18. 18.
    H.J. Engell: Electrochim. Acta., 1977, vol. 22, pp. 987–993.CrossRefGoogle Scholar
  19. 19.
    K.E. Heusler: Corros. Sci., 1990, vol. 31, pp. 597–606.CrossRefGoogle Scholar
  20. 20.
    H.A. Sonawane and S.S. Joshi: J. Manuf. Sci. Technol., 2010, vol. 3, pp. 204–217.CrossRefGoogle Scholar
  21. 21.
    D. Whitehouse: “Surfaces and Their Measurement”, first ed, Hermes Penton Science, London, 2002.Google Scholar
  22. 22.
    I.C. Noyan: Metall. Trans. A., 1983, vol. 14, pp. 249–258.CrossRefGoogle Scholar
  23. 23.
    D. Kohli, R. Rakesh, V.P. Sinha, G.J. Prasad and I. Samajdar: J. Nucl. Mater., 2014, vol. 445, pp. 200–208.CrossRefGoogle Scholar
  24. 24.
    B.D. Cullity, S.R. Stock (2001) Elements of X-ray Diffraction. Prentice Hall, Upper Saddle River.Google Scholar
  25. 25.
    W.G. Golden (1985) Fourier Transform Infrared Reflection–Absorption Spectroscopy. Academic Press INC, Cambridge.CrossRefGoogle Scholar
  26. 26.
    M. Lin, A.B. Rasco, A.G. Cavinato, M.A. Holy (2009) In: DW Sun (Ed) Infrared Spectrosc Food Qual Anal Control. Elsevier Inc., Amsterdam, pp. 119–143.Google Scholar
  27. 27.
    J.S. Gaffney, N.A. Marley, D.E. Jones (2012) Fourier transform infrared (FTIR) spectrscopy. In: EN Kaufmann (Ed) Charact. Mater. Wiley, New York, pp. 1104–1135.Google Scholar
  28. 28.
    N.T. McDevitt and W.L. Baun: Spectrochim. Acta., 1964, vol. 20, pp. 799–808.CrossRefGoogle Scholar
  29. 29.
    S.F. Corbin, D.M. Turriff (2012) Thermal diffusivity by the laser flash technique. In: EN Kaufmann (Ed) Charact. Mater. Wiley, New York, pp. 510–517.Google Scholar
  30. 30.
    M. Boutinguiza, F. Lusquiños, J. Pou, R. Soto, F. Quintero and R. Comesaña: Opt. Lasers Eng., 2012, vol. 50, pp. 727–730.CrossRefGoogle Scholar
  31. 31.
    K. Eluyaperumal, P.K. De and J. Balachandran: Corrosion., 1972, vol. 28, No. 7, pp. 269-273.CrossRefGoogle Scholar
  32. 32.
    N. Srinivasan, V. Kain, N. Birbilis, B. Sunil Kumar, M.N. Gandhi and P. V Sivaprasad: Corr.Sci., 2016, vol. 111, pp. 404-413.CrossRefGoogle Scholar
  33. 33.
    M.G. Fontana (2005) Corrosion Engineering, Third edition, Tata Mcgraw Hill, Philadelphia.Google Scholar
  34. 34.
    R.A. Schwarzer, D.P. Field, B.L. Adams, M. Kumar, A.J. Schwartz (2009) Present state of electron backscatter diffraction and prospective developments. In: A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (Eds) Electron Backscatter Diffraction in Materials Science. Springer Science + Business Media, New York, pp. 1–20.Google Scholar
  35. 35.
    S. Wright and B. Adams: Metall. Trans. A., 1992, vol. 23, pp. 759–767.CrossRefGoogle Scholar
  36. 36.
    S.I. Wright, M.M. Nowell and D.P. Field: Microsc.Microanal., 2011, vol. 17, pp. 316–329.CrossRefGoogle Scholar
  37. 37.
    L. Saraf: Microsc Microanal., 2011, vol. 17, pp. 424–425.CrossRefGoogle Scholar
  38. 38.
    K.A. Al-Ghamdi and A. Iqbal: J. Clean. Prod., 2015, vol. 108, pp. 192–206.CrossRefGoogle Scholar
  39. 39.
    C.H. Lauro, L.C. Brandao, D. Baldo, R.A. Reis and J.P. Davim: Measurement, 2014, vol. 58, pp. 73–86.CrossRefGoogle Scholar
  40. 40.
    G.T. Burstein and S.P. Mattin: Philos. Mag. Lett., 1992, vol. 66, pp. 127–131.CrossRefGoogle Scholar
  41. 41.
    G.T. Burstein, C. Liu, R.M. Souto and S.P. Vines: Corros. Eng. Sci. Technol., 2004, vol. 39, pp. 25–30.CrossRefGoogle Scholar
  42. 42.
    K.N. Lyon, T.J. Marrow and S.B. Lyon: J. Mater. Process. Technol., 2015, vol. 218, pp. 32–37.CrossRefGoogle Scholar
  43. 43.
    P.E. Manning, D.J. Duquette and W.F. SAvage: Corrosion, 1979, vol. 35, pp. 151–157.CrossRefGoogle Scholar
  44. 44.
    S Ghosh, V Kain (2010) Mater. Sci. Eng. A 527:679–683CrossRefGoogle Scholar
  45. 45.
    D. Kuhlmann-Wilsdorf and N. Hansen: Scr. Metall. Mater., 1991, vol. 25, pp. 1557–1562.CrossRefGoogle Scholar
  46. 46.
    D.A. Hughes, N. Hansen and D.J. Bammann: Scr. Mater., 2003, vol. 48, pp. 147–153.CrossRefGoogle Scholar
  47. 47.
    B. Verlinden, J. Driver, I. Samajdar and R.D. Doherty: “Thermo Mechanical Processing of Metallic Materials”, first ed., Pergamon Materials Series, Great Briton, 2007.Google Scholar
  48. 48.
    W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–997.CrossRefGoogle Scholar
  49. 49.
    S.K. Shekhawat, R. Chakrabarty, V. Basavaraj, V.D. Hiwarkar, K. V. Mani and P.J. Guruprasad: Acta Mater., 2015, vol. 84, pp. 256–264.CrossRefGoogle Scholar
  50. 50.
    C.G. Rhodes and A.W. Thompson: Metall. Trans. A., 1977, vol. 8, pp. 1901–1906.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • N. Srinivasan
    • 1
  • B. Sunil Kumar
    • 2
  • V. Kain
    • 2
  • N. Birbilis
    • 3
  • S. S. Joshi
    • 4
  • P. V. Sivaprasad
    • 5
  • G. Chai
    • 6
  • A. Durgaprasad
    • 7
  • S. Bhattacharya
    • 8
  • I. Samajdar
    • 7
  1. 1.IITB-Monash Research AcademyIIT BombayMumbaiIndia
  2. 2.Materials Processing, & Corrosion Engineering DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of Materials Science and EngineeringMonash UniversityClaytonAustralia
  4. 4.Department of Mechanical EngineeringIIT BombayMumbaiIndia
  5. 5.Sandvik Group R&D, Sandvik Asia Pvt. LtdPuneIndia
  6. 6.Sandvik Materials TechnologySandvikenSweden
  7. 7.Department of Metallurgical Engineering, & Materials ScienceIIT BombayMumbaiIndia
  8. 8.Technical Physics, Division Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations