Skip to main content
Log in

Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

F :

Feed rate (mm/min)

n s :

Spindle speed (rpm)

t d :

Depth of cut (mm)

ε :

Strain

έ :

Strain rate (s−1)

α :

Clearance /rake angle (deg)

α n :

Normal clearance /rake angle (deg)

D :

Diameter of the tool (mm)

t c :

Chip thickness (or) cutting ratio (deg)

ω :

Helix angle (deg)

η s :

Shear flow angle (deg)

η c :

Chip flow angle (deg)

γ n :

Normal rake angle (deg)

V s :

Shear velocity component along the shear plane (mm/min)

N c :

Rotation of spindle speed (rpm)

ф n :

Shear plane angle (deg)

S o :

Feed per tooth (mm)

V :

Cutting speed (mm/min)

Y :

Shear band spacing (μm)

References

  1. S. Ghosh, V. Kain (2010) Mater. Sci. Eng. A. 527:679–683.

    Article  Google Scholar 

  2. A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice and K.J. Mottershead: Corros. Sci., 2011, vol. 53, pp. 3398–3415.

    Article  CAS  Google Scholar 

  3. S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar and I. Samajdar: Mater. Charact., 2012, vol. 72, pp. 68–76.

    Article  CAS  Google Scholar 

  4. J. Gravier, V. Vignal and S. Bissey-Breton: Corros. Sci.,2012, vol. 61, pp. 162–170.

    Article  CAS  Google Scholar 

  5. G.T. Burstein and P.C. Pistorius: Corrosion., 1995, vol. 51, pp. 380–385.

    Article  CAS  Google Scholar 

  6. T. Hong and M. Nagumo: Corros. Sci., 1997, vol. 39, pp. 1665–1672.

    Article  CAS  Google Scholar 

  7. S. Ghosh and V. Kain: J. Nucl. Mater., 2010, vol. 403, pp. 62–67.

    Article  CAS  Google Scholar 

  8. G. Hinds, L. Wickström, K. Mingard and A. Turnbull: Corros. Sci., 2013, vol. 71, pp. 43–52.

    Article  CAS  Google Scholar 

  9. P.G. Benardos and G.-C. Vosniakos: Int. J. Mach. Tools Manuf., 2003, vol. 43, pp. 833–844.

    Article  Google Scholar 

  10. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal and S.K. Baveja, Mater. Des., 2011, vol. 32, pp. 3823–3831.

    Article  CAS  Google Scholar 

  11. Y.K. Chou: J. Mater. Process. Technol., 2002, vol. 124, pp. 171–177.

    Article  CAS  Google Scholar 

  12. J. Kuniya, I. Masaoka, R. Sasaki, S. Kirihara (1980) J. Mater. Energy. Syst. 1: 30–40.

    Article  CAS  Google Scholar 

  13. S. Jeelani and J.A. Bailey: J. Eng. Mater. Technol., 1986, vol. 108, pp. 93–98.

    Article  Google Scholar 

  14. D.Y. Jang, T.R. Watkins, K.J. Kozaczek, C.R. Hubbard and O.B. Cavin: Wear., 1996, vol. 194, pp. 168–173.

    Article  CAS  Google Scholar 

  15. V. García Navas, O. Gonzalo and I. Bengoetxea: Int. J. Mach. Tools Manuf., 2012, vol. 61, pp. 48–57.

    Article  Google Scholar 

  16. M.C.Shaw: “Metal Cutting Principles”, second ed, Oxford University Press, New York, 2005.

    Google Scholar 

  17. Z. Wang, M. Rahman: “High speed machining” in: M.S.J. Hashmi (Ed.), Compr. Mater. Process., Elsevier, Ireland, 2014: pp. 221–253.

    Google Scholar 

  18. H.J. Engell: Electrochim. Acta., 1977, vol. 22, pp. 987–993.

    Article  CAS  Google Scholar 

  19. K.E. Heusler: Corros. Sci., 1990, vol. 31, pp. 597–606.

    Article  CAS  Google Scholar 

  20. H.A. Sonawane and S.S. Joshi: J. Manuf. Sci. Technol., 2010, vol. 3, pp. 204–217.

    Article  Google Scholar 

  21. D. Whitehouse: “Surfaces and Their Measurement”, first ed, Hermes Penton Science, London, 2002.

    Google Scholar 

  22. I.C. Noyan: Metall. Trans. A., 1983, vol. 14, pp. 249–258.

    Article  CAS  Google Scholar 

  23. D. Kohli, R. Rakesh, V.P. Sinha, G.J. Prasad and I. Samajdar: J. Nucl. Mater., 2014, vol. 445, pp. 200–208.

    Article  Google Scholar 

  24. B.D. Cullity, S.R. Stock (2001) Elements of X-ray Diffraction. Prentice Hall, Upper Saddle River.

    Google Scholar 

  25. W.G. Golden (1985) Fourier Transform Infrared Reflection–Absorption Spectroscopy. Academic Press INC, Cambridge.

    Book  Google Scholar 

  26. M. Lin, A.B. Rasco, A.G. Cavinato, M.A. Holy (2009) In: DW Sun (Ed) Infrared Spectrosc Food Qual Anal Control. Elsevier Inc., Amsterdam, pp. 119–143.

  27. J.S. Gaffney, N.A. Marley, D.E. Jones (2012) Fourier transform infrared (FTIR) spectrscopy. In: EN Kaufmann (Ed) Charact. Mater. Wiley, New York, pp. 1104–1135.

    Google Scholar 

  28. N.T. McDevitt and W.L. Baun: Spectrochim. Acta., 1964, vol. 20, pp. 799–808.

    Article  CAS  Google Scholar 

  29. S.F. Corbin, D.M. Turriff (2012) Thermal diffusivity by the laser flash technique. In: EN Kaufmann (Ed) Charact. Mater. Wiley, New York, pp. 510–517.

    Google Scholar 

  30. M. Boutinguiza, F. Lusquiños, J. Pou, R. Soto, F. Quintero and R. Comesaña: Opt. Lasers Eng., 2012, vol. 50, pp. 727–730.

    Article  Google Scholar 

  31. K. Eluyaperumal, P.K. De and J. Balachandran: Corrosion., 1972, vol. 28, No. 7, pp. 269-273.

    Article  Google Scholar 

  32. N. Srinivasan, V. Kain, N. Birbilis, B. Sunil Kumar, M.N. Gandhi and P. V Sivaprasad: Corr.Sci., 2016, vol. 111, pp. 404-413.

    Article  CAS  Google Scholar 

  33. M.G. Fontana (2005) Corrosion Engineering, Third edition, Tata Mcgraw Hill, Philadelphia.

    Google Scholar 

  34. R.A. Schwarzer, D.P. Field, B.L. Adams, M. Kumar, A.J. Schwartz (2009) Present state of electron backscatter diffraction and prospective developments. In: A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (Eds) Electron Backscatter Diffraction in Materials Science. Springer Science + Business Media, New York, pp. 1–20.

    Google Scholar 

  35. S. Wright and B. Adams: Metall. Trans. A., 1992, vol. 23, pp. 759–767.

    Article  Google Scholar 

  36. S.I. Wright, M.M. Nowell and D.P. Field: Microsc.Microanal., 2011, vol. 17, pp. 316–329.

    Article  CAS  Google Scholar 

  37. L. Saraf: Microsc Microanal., 2011, vol. 17, pp. 424–425.

    Article  Google Scholar 

  38. K.A. Al-Ghamdi and A. Iqbal: J. Clean. Prod., 2015, vol. 108, pp. 192–206.

    Article  Google Scholar 

  39. C.H. Lauro, L.C. Brandao, D. Baldo, R.A. Reis and J.P. Davim: Measurement, 2014, vol. 58, pp. 73–86.

    Article  Google Scholar 

  40. G.T. Burstein and S.P. Mattin: Philos. Mag. Lett., 1992, vol. 66, pp. 127–131.

    Article  CAS  Google Scholar 

  41. G.T. Burstein, C. Liu, R.M. Souto and S.P. Vines: Corros. Eng. Sci. Technol., 2004, vol. 39, pp. 25–30.

    Article  CAS  Google Scholar 

  42. K.N. Lyon, T.J. Marrow and S.B. Lyon: J. Mater. Process. Technol., 2015, vol. 218, pp. 32–37.

    Article  CAS  Google Scholar 

  43. P.E. Manning, D.J. Duquette and W.F. SAvage: Corrosion, 1979, vol. 35, pp. 151–157.

    Article  CAS  Google Scholar 

  44. S Ghosh, V Kain (2010) Mater. Sci. Eng. A 527:679–683

    Article  Google Scholar 

  45. D. Kuhlmann-Wilsdorf and N. Hansen: Scr. Metall. Mater., 1991, vol. 25, pp. 1557–1562.

    Article  CAS  Google Scholar 

  46. D.A. Hughes, N. Hansen and D.J. Bammann: Scr. Mater., 2003, vol. 48, pp. 147–153.

    Article  CAS  Google Scholar 

  47. B. Verlinden, J. Driver, I. Samajdar and R.D. Doherty: “Thermo Mechanical Processing of Metallic Materials”, first ed., Pergamon Materials Series, Great Briton, 2007.

    Google Scholar 

  48. W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–997.

    Article  CAS  Google Scholar 

  49. S.K. Shekhawat, R. Chakrabarty, V. Basavaraj, V.D. Hiwarkar, K. V. Mani and P.J. Guruprasad: Acta Mater., 2015, vol. 84, pp. 256–264.

    Article  CAS  Google Scholar 

  50. C.G. Rhodes and A.W. Thompson: Metall. Trans. A., 1977, vol. 8, pp. 1901–1906.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Sandvik and DST for partial funding, and BRNS (Board of Research of Nuclear Sciences, India) for support. Support from the National Facility of Texture and SAIF (Sophisticated Analytical Instrumentation Facility) and CoEST (center of excellence in steel technology) of IIT Bombay are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted August 25, 2017.

Appendix

Appendix

Strain (ε) and strain rate (έ) calculated as per (Eqs. [A.1] and [A.2]), respectively.

$$ \varepsilon = \frac{{\cot \left( {\phi_{n} } \right) + \tan (\phi_{n} - \gamma_{n} )}}{{\cos \eta_{s} }} $$
(A.1)
$$ \varepsilon^{\prime} = \frac{{V_{s} }}{\Delta \gamma } $$
(A.2)
$$ \eta_{s} = \tan^{ - 1} \left( {\frac{{(\tan \omega \times \cos \left( {\phi_{n} - \gamma_{n} } \right)) + (\tan \eta_{s} \times \sin \phi_{n} )}}{{\cos \eta_{s} }}} \right) $$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, N., Sunil Kumar, B., Kain, V. et al. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels. Metall Mater Trans A 49, 2281–2292 (2018). https://doi.org/10.1007/s11661-018-4598-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4598-z

Navigation