Skip to main content
Log in

Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments

  • Topical Collection: Next Generation Superalloys and Beyond
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High temperature oxidation of alumina-forming MAX phases, Ti2AlC and Cr2AlC, were examined under turbine engine environments and coating configurations. Thermogravimetric furnace tests of Ti2AlC showed a rapid initial transient due to non-protective TiO2 growth. Subsequent well-behaved cubic kinetics for alumina scale growth were shown from 1273 K to 1673 K (1000 °C to 1400 °C). These possessed an activation energy of 335 kJ/mol, consistent with estimates of grain boundary diffusivity of oxygen (~375 kJ/mol). The durability of Ti2AlC under combustion conditions was demonstrated by high pressure burner rig testing at 1373 K to 1573 K (1100 °C to 1300 °C). Here good stability and cubic kinetics also applied, but produced lower weight gains due to volatile TiO(OH)2 formation in water vapor combustion gas. Excellent thermal stability was also shown for yttria-stabilized zirconia thermal barrier coatings deposited on Ti2AlC substrates in 2500-hour furnace tests at 1373 K to 1573 K (1100 °C to 1300 °C). These sustained a record 35 µm of scale as compared to 7 μm observed at failure for typical superalloy systems. In contrast, scale and TBC spallation became prevalent on Cr2AlC substrates above 1423 K (1150 °C). Cr2AlC diffusion couples with superalloys exhibited good long-term mechanical/oxidative stability at 1073 K (800 °C), as would be needed for corrosion-resistant coatings. However, diffusion zones containing a NiAl-Cr7C3 matrix with MC and M3B2 particulates were commonly formed and became extensive at 1423 K (1150 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. [37]

Fig. 2
Fig. 3

Reprinted with permission from Ref. [37]

Fig. 4

Reprinted with permission from Ref. [37]

Fig. 5

Reprinted with permission from Surface Coatings and Technology[39]

Fig. 6

Reprinted with permission from Ref. [54]

Fig. 7

Reprinted with permission from Ref. [38]

Fig. 8

Reprinted with permission from Ref. [38]

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.W. Barsoum and T. El-raghy: Am. Sci., 2001, vol. 89, pp. 334–43.

    Article  Google Scholar 

  2. M.W. Barsoum and M. Radovic: Annu. Rev. Mater. Res., 2011, vol. 41, pp. 195–227.

    Article  Google Scholar 

  3. H. Li, S. Li, and Y. Zhou: Mater. Sci. Eng. A, 2014, vol. 607, pp. 525–9.

    Article  Google Scholar 

  4. S. Basu, N. Obando, A. Gowdy, I. Karaman, and M. Radovic: J. Electrochem. Soc., 2012, vol. 159, p. C90.

    Article  Google Scholar 

  5. D.J. Tallman, B. Anasori, and M.W. Barsoum: Mater. Res. Lett., 2013, vol. 1, pp. 115–25.

    Article  Google Scholar 

  6. X.H. Wang, F.Z. Li, J.X. Chen, and Y.C. Zhou: Corros. Sci., 2012, vol. 58, pp. 95–103.

    Article  Google Scholar 

  7. X. Li, Y. Qian, L. Zheng, J. Xu, and M. Li: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 3311–8.

    Article  Google Scholar 

  8. X.H. Wang and Y.C. Zhou: Corros. Sci., 2003, vol. 45, pp. 891–907.

    Article  Google Scholar 

  9. D.B. Lee and S.W. Park: Corros. Sci., 2011, vol. 53, pp. 2645–50.

    Article  Google Scholar 

  10. X. Xu, Y. Li, J. Zhu, and B. Mei: Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 869–73.

    Article  Google Scholar 

  11. X. Li, L. Zheng, Y. Qian, J. Xu, and M. Li: Corros. Sci., 2016, vol. 104, pp. 112–22.

    Article  Google Scholar 

  12. Z.J. Lin, M.S. Li, J.Y. Wang, and Y.C. Zhou: Scr. Mater., 2008, vol. 58, pp. 29–32.

    Article  Google Scholar 

  13. X.K. Qian, X.D. He, Y.B. Li, Y. Sun, H. Li, and D.L. Xu: Corros. Sci., 2011, vol. 53, pp. 290–5.

    Article  Google Scholar 

  14. Z. Lin, M. Zhuo, Y. Zhou, M. Li, and J. Wang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 2964–6.

    Google Scholar 

  15. M. Sonestedt, J. Frodelius, M. Sundberg, L. Hultman, and K. Stiller: Corros. Sci., 2010, vol. 52, pp. 3955–61.

    Article  Google Scholar 

  16. D. Horlait, S. Grasso, N. Al Nasiri, P.A. Burr, and W.E. Lee: J. Am. Ceram. Soc., 2016, vol. 99, pp. 682–90.

    Article  Google Scholar 

  17. J. Frodelius, M. Sonestedt, S. Björklund, J.P. Palmquist, K. Stiller, H. Högberg, and L. Hultman: Surf. Coatings Technol., 2008, vol. 202, pp. 5976–81.

    Article  Google Scholar 

  18. Z. Lin, Y. Zhou, M. Li, and J. Wang: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3871–9.

    Article  Google Scholar 

  19. G.M. Song, V. Schnabel, C. Kwakernaak, S. van der Zwaag, J.M. Schneider, and W.G. Sloof: Mater. High Temp., 2012, vol. 29, pp. 205–9.

    Article  Google Scholar 

  20. X.H. Wang and Y.C. Zhou: Oxid. Met., 2003, vol. 59, pp. 303–20.

    Article  Google Scholar 

  21. B.R. Maier, B.L. Garcia-Diaz, B. Hauch, L.C. Olson, R.L. Sindelar, and K. Sridharan: J. Nucl. Mater., 2015, vol. 466, pp. 1–6.

    Article  Google Scholar 

  22. Z. Feng, P. Ke, and A. Wang: J. Mater. Sci. Technol., 2015, vol. 31, pp. 1193–97.

    Article  Google Scholar 

  23. G.M. Song, S.B. Li, C.X. Zhao, W.G. Sloof, S. van der Zwaag, Y.T. Pei, and J.T.M. De Hosson: J. Eur. Ceram. Soc., 2011, vol. 31, pp. 855–62.

    Article  Google Scholar 

  24. J. Xu, Z. Gao, Y. Qian, and M. Li: Oxid. Met., 2016, vol. 86, pp. 327–38.

    Article  Google Scholar 

  25. Q.M. Wang, R. Mykhaylonka, A. Flores Renteria, J.L. Zhang, C. Leyens, and K.H. Kim: Corros. Sci., 2010, vol. 52, pp. 3793–3802.

    Article  Google Scholar 

  26. D.B. Lee and T.D. Nguyen: J. Alloys Compd., 2008, vol. 464, pp. 434–9.

    Article  Google Scholar 

  27. D.B. Lee, T.D. Nguyen, J.H. Han, and S.W. Park: Corros. Sci., 2007, vol. 49, pp. 3926–34.

    Article  Google Scholar 

  28. T.C. Duong, A. Talapatra, W. Son, M. Radovic, and R. Arroyave: On the stochastic phase stability of Ti2AlC-Cr2AlC, http://arxiv.org/abs/1704.02500.

  29. J.J. Li, Y.H. Qian, D. Niu, M.M. Zhang, Z.M. Liu, and M.S. Li: Appl. Surf. Sci., 2012, vol. 263, pp. 457–64.

    Article  Google Scholar 

  30. D.E. Hajas, M. Baben, B. Hallstedt, R. Iskandar, J. Mayer, and J.M. Schneider: Surf. Coat. Technol., 2011, vol. 206, pp. 591–8.

    Article  Google Scholar 

  31. J. Byeon, J. Liu, Hopkins, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-raghy, and Y. Sohn: Oxidation, 2007, vol. 68, pp. 97–111.

    Article  Google Scholar 

  32. O. Berger and R. Boucher: Surf. Eng., 2016, vol. 844, pp. 1–12.

    Google Scholar 

  33. W. Tian, P. Wang, Y. Kan, and G. Zhang: J. Mater. Sci., 2008, vol. 43, pp. 2785–91.

    Article  Google Scholar 

  34. M. Naveed, A. Obrosov, A. Zak, and S. Weiss: Metals (Basel)., 2016, vol. 6, p. 265.

    Article  Google Scholar 

  35. Q.M. Wang, A. Flores, O. Schroeter, R. Mykhaylonka, C. Leyens, W. Garkas, and M. Baben: Surf. Coatings Technol., 2010, vol. 204, pp. 2343–52.

    Article  Google Scholar 

  36. O. Berger, C. Leyens, S. Heinze, R. Boucher, and M. Ruhnow: Thin Solid Films, 2015, vol. 580, pp. 6–11.

    Article  Google Scholar 

  37. J.L. Smialek: Oxid. Met., 2015, vol. 83, pp. 351–66.

    Article  Google Scholar 

  38. J.L. Smialek: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 23–34.

    Article  Google Scholar 

  39. J.L. Smialek, B.J. Harder, and A. Garg: Surf. Coatings Technol., 2016, vol. 285, pp. 77–86.

    Article  Google Scholar 

  40. Z.J. Lin, M.S. Li, J.Y. Wang, and Y.C. Zhou: Acta Mater., 2007, vol. 55, pp. 6182–91.

    Article  Google Scholar 

  41. L.M. Aw, R. Amendola, J.W. Ryter, M.W. McCleary, P.E. Gannon, M.E. Leonard, and J.L. Smialek: J. Electrochem. Soc., 2017 164(6), pp. C218–23.

    Article  Google Scholar 

  42. J.L. Smialek and A. Garg: Surf. Interface Anal., 2015, vol. 47, pp. 844–853.

    Article  Google Scholar 

  43. J.L. Smialek: Unusual Oxidative Limitations for Al-MAX Phases. NASA/TM—2017-219444, Cleveland, OH, 2017.

  44. R.C. Robinson: NASA GRC’s High Pressure Burner Rig Facility and Materials Test Capabilities; NASA/CR–1999-209411, Cleveland, OH, 1999.

  45. R.C. Robinson and J.L. Smialek: J. Am. Ceram. Soc., 1999, vol. 82, pp. 1817–25.

    Article  Google Scholar 

  46. J.L. Smialek and A. Garg: Surf. Interface Anal., 2015, vol. 47, pp. 844–53.

    Article  Google Scholar 

  47. T.P. Gabb, J. Gayda, J. Telesman, and P.T. Kantzos: NASA TM 2005-213645, 2005, pp. 1–75.

  48. T.P. Gabb and D.R. Miller: NASA TM 2012-217604, 2012, pp. 1–31.

  49. D.J. Tallman, B. Anasori, and M.W. Barsoum: Mater. Res. Lett., 2013, vol. 1, pp. 115–25.

    Article  Google Scholar 

  50. X.H. Wang, F.Z. Li, J.X. Chen, and Y.C. Zhou: Corros. Sci., 2012, vol. 58, pp. 95–103.

    Article  Google Scholar 

  51. G.M. Song, V. Schnabel, C. Kwakernaak, S. van der Zwaag, J.M. Schneider, and W.G. Sloof: Mater. High Temp., 2012, vol. 29, pp. 205–9.

    Article  Google Scholar 

  52. S. Kitaoka, T. Matsudaira, and M. Wada: Mater. Trans., 2009, vol. 50, pp. 1023–31.

    Article  Google Scholar 

  53. J.L. Smialek, N.S. Jacobson, B. Gleeson, D.B. Hovis, and A.H. Heuer: Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales, NASA TM-2013-217855, 2013, pp. 1–34.

  54. J.L. Smialek: Corros. Sci., 2015, vol. 91, pp. 281–6.

    Article  Google Scholar 

  55. G. Liu, M. Li, and Y. Zhou: Oxid. Met., 2006, vol. 66, pp. 115–25.

    Article  Google Scholar 

  56. B.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead: Metall. Mater. Trans. E, 2014, vol. 2, pp. 190–6.

    Google Scholar 

  57. I. Yuri and T. Hisamatsu: in ASME Turbo Expo 2003, ASME, 2003, pp. 633–42.

  58. H. Klemm: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2735–40.

    Article  Google Scholar 

  59. J.L. Smialek: Surf. Coat. Technol., 2015, vol. 276, pp. 31–8.

    Article  Google Scholar 

  60. J.L. Smialek and A. Garg: NASA TM 2014-216679, 2014, pp. 1–19.

  61. Y. Chen, T. Tan, and H. Chen: J. Nucl. Sci. Technol., 2008, vol. 45, pp. 662–7.

    Article  Google Scholar 

  62. E.J. Opila and R.E. Hann: J. Am. Ceram. Soc., 1997, vol. 80, pp. 197–205.

    Article  Google Scholar 

  63. J.L. Smialek and J. V Auping: Oxid. Met., 2002, vol. 57, pp. 559–81.

    Article  Google Scholar 

  64. Q.N. Nguyen, D.L. Myers, N.S. Jacobson, and E.J. Opila: Experimental and Theoretical Study of Thermodynamics of the Reaction of Titania and Water at High Temperatures; NASA TM-2014-218372, Cleveland, OH, 2014.

  65. E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox, and N.S. Jacobson: J. Am. Ceram. Soc., 1999, vol. 82, pp. 1826–34.

    Article  Google Scholar 

  66. N. Jacobson, D. Myers, E. Opila, and E. Copland: in Journal of Physics and Chemistry of Solids, vol. 66, 2005, pp. 471–8.

    Article  Google Scholar 

  67. E.J. Opila: Mater. Sci. Forum, 2004, vol. 461–464, pp. 765–74.

    Article  Google Scholar 

  68. M. Fritsch, H. Klemm, M. Herrmann, and B. Schenk: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3557–65.

    Article  Google Scholar 

Download references

Acknowledgments

Many important contributions of numerous colleagues and technical support personnel are gratefully acknowledged: Nathan S. Jacobson, Bryan J. Harder, Anita Garg, Simon Gray, Richard C. Rogers, Robert Pastel, Donald L. Humphrey, and Joy Buehler. This work was supported by both hot section and transformative technology projects under the NASA Fundamental Aeronautics Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Smialek.

Additional information

Manuscript submitted July 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smialek, J.L. Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments. Metall Mater Trans A 49, 782–792 (2018). https://doi.org/10.1007/s11661-017-4346-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4346-9

Navigation