Skip to main content
Log in

Bulk Diffusion-Controlled Thermal Desorption Spectroscopy with Examples for Hydrogen in Iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Bulk diffusion-controlled thermal desorption spectroscopy (TDS) is studied by solving the corresponding transport equations numerically as well as analytically with appropriate approximations. The two solutions are compared in order to validate the derived equations including the Kissinger equation. Besides the diffusion of the desorbed species through the sample, trapping of the species at special lattice sites within the sample is included in the numerical and approximate analytical solutions. Trapping energies are mono-energetic, multi-energetic, or are described by a box-type distribution. TDS-peaks were simulated for different heating rates, sample thicknesses, trap concentrations, and initial degrees of trap saturation. It is shown that for the case of mono-energetic traps, Kissinger’s equation is obeyed for both numerical and analytical results. This widely used equation for reaction rate-controlled studies is derived in an explicit form for diffusion-controlled processes. Together with a newly derived relation between maximum desorption rate and temperature, TDS-spectra yield information about diffusion coefficient, trap energies, and trap concentration as well as trap saturation. This is exemplified using data of two experimental studies. Although the numerical and analytical treatment is in general applicable to all diffusion species, hydrogen in iron alloys is used as a model system because of its technological importance and the increasing number of experimental work with this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

c :

Concentration (mol/m3)

c o = c fo + c to :

Concentration of all lattice sites hydrogen can occupy, i.e., lattice and trap sites (mol sites per volume) (mol/m3)

c fo :

Concentration of normal lattice sites, where the free hydrogen is dissolved (mol/m3)

c to :

Concentration of trap sites (mol traps per volume) (additional subscript 1 or 2 refers to corresponding trap type) (mol/m3)

c f :

Concentration of hydrogen in free sites (mol/m3)

c fi :

Initial concentration of hydrogen in free sites (mol/m3)

c t :

Concentration of hydrogen in trap sites (additional subscript 1 or 2 refers to corresponding trap type) (mol/m3)

c tot :

Total concentration of hydrogen, c f + c t (mol/m3)

c fm :

Maximum concentration of hydrogen in free sites at x = 0 at all temperatures including T = T m (mol/m3)

D :

Diffusion coefficient (m2/s)

D f :

Diffusion coefficient along free sites (m2/s)

D fo :

Prefactor of diffusion coefficient D f (m2/s)

E d :

Activation energy for desorption (J/mol)

E t :

Trap energy (negative energy difference between trap and normal site). Additional subscripts 1, 2, etc., refer to different kinds of traps (J/mol)

E s :

Activation energy from free into trap sites (J/mol)

E 1 :

Upper bound of trap energies of a box-type distribution (J/mol)

E 2 :

Lower bound of trap energies of a box-type distribution (J/mol)

f :

Filling factor of traps as defined in Section III–E and for a box-type distribution of traps as in Eq. [42] (dimensionless)

F 1t :

Helmholtz free energy of trap sites labeled 1 (J/mol)

F(t):

Integral defined after Eq. [5]

J :

Flux or desorption rate of a species leaving the sample (at one side of flat rectangular sample). Numerically calculated fluxes are given as J/c o [mol/(m2 s)]

J m :

Maximum flux or desorption rate at T m. Numerically calculated fluxes are given as J m/c o [mol/(m2 s)]

J min :

Minimum flux or desorption rate at T min [mol/(m2 s)]

J sim :

Maximum flux or desorption rate at T m as obtained during numerical evaluation and usually given as J m/c o [mol/(length-step2 time-step)]

J expt :

Maximum flux or desorption rate at T m as obtained by experiment [mol/(m2 s)]

l :

Sample thickness (m)

l sim :

Sample thickness used in simulations, i.e., number of length steps during finite difference calculations (length-step)

l expt :

Sample thickness used in experiments (m)

n(E):

Distribution of trap energies. n(E)dE corresponds to c to for trap energies between E and E + dE (mol/m3J)

R :

Gas constant = 8.314 J/(mol K)

Q :

Activation energy of diffusion from one free site to the adjacent free site (J/mol)

σ :

Width of a Gaussian distribution (K)

S 1t :

Entropy of trap sites labeled 1 [J/(mol K)]

t :

Time (s)

t sim :

Time during simulations, i.e., number of time steps during finite difference calculations (time-step)

t expt :

Time during experiments (s)

T :

Temperature (K)

T m :

Temperature with a local maximum desorption rate (K)

T min :

Temperature with a local minimum desorption rate (K)

T o :

Temperature at the beginning of TDS (K)

θ :

Heating rate (K/s)

θ sim :

Heating rate used during simulation (K/steps)

θ expt :

Heating rate used in experiments. Unit is K/s

y t :

Abbreviation for exp(F t/RT) or exp(E t/RT), respectively. Additional subscripts 1, 2, etc., refer to different kinds of traps (dimensionless)

y t0 :

Abbreviation for exp(−S t/R) (dimensionless)

x :

Space coordinate perpendicular to the flat surface of the rectangular sample (m)

References

  1. P. Novak, R.Yuan, B.P.Somerday, P.Sofronis, R.O.Ritchie: J. Mech. Phys. Solids 2010, 58, 206–26.

    Article  Google Scholar 

  2. D. P. Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken: Corros Sci 2012, 65, 199–208.

    Article  Google Scholar 

  3. W.Y. Choo and J. Y. Lee: Metall. Trans. A: 1982, 13A, 135–40.

    Article  Google Scholar 

  4. T. Yamaguchi and M. Nagumo: ISIJ Int., 2003, 43, 514–9.

    Article  Google Scholar 

  5. H.G. Lee and J.Y. Lee: Acta Mater. 1984, 32 (1984) 131–6.

    Article  Google Scholar 

  6. R.A. Langley, J. Nucl. Mater. 1984, 128–129, 622–8.

    Article  Google Scholar 

  7. K.L. Wilson, J. Nucl. Mater. 1981, 103–104, 453–63.

    Article  Google Scholar 

  8. A. M. de Jong, J. W. Niemantsverdriet, Surf. Sci. 1990, 233, 355–65.

    Article  Google Scholar 

  9. H.E. Kissinger: Anal. Chem., 1957, vol. 29, 1702–6.

    Article  Google Scholar 

  10. S. M. Lee and J. Y. Lee: Metall. Trans. A, 17A. (1986) 181–7.

    Article  Google Scholar 

  11. O. Yoshinari, K. Sanpei and K. Tanaka: Acta Mater. Metall. 1991, 39, 2657–65.

    Article  Google Scholar 

  12. R.A. Oriani: Acta Metall. 1970, 18, 147–53.

    Article  Google Scholar 

  13. R. Kirchheim: Prog. Mater. Sci. 1988, 32, 262–325.

    Article  Google Scholar 

  14. R. Kirchheim: in Solid State Physics, H. Ehrenreich and F. Spaepen, eds., Elsevier, Amsterdam, 2004, vol. 59, 203–305.

  15. A. Turnbull, R.B. Hutchings, D.H. Ferriss: Mater. Sci. Eng. A 1997, 238, 317–28.

    Article  Google Scholar 

  16. W. Arendt, T. Lostak, O. Rott, and R.-G. Thiessen: Proceedings of “steelyhydrogen2014”, 5–7 May 2014, Ghent, 349.

  17. E.J. Song, D.-W. Suh, and H.K.D.H. Bhadeshia: Comput. Mater. Sci., 2013, 79, 36–42.

    Article  Google Scholar 

  18. J. Crank, The Mathematics of Diffusion. Clarendon Press, Oxford (1975).

    Google Scholar 

  19. G.R. Longhurst, D.f. Holland, J.I. Jones, and B.J. Merrill: Tritium Migration and Analysis Program, EGG-FSP-10315.

  20. H. J. Grabke, E. Riecke, Mater. Tehnol. 34 (2000) 331–41.

    Google Scholar 

  21. E. Riecke: 3rd International Congress on Hydrogen in Metals, Paris, June 7–11, 1982.

  22. K. Takai and R. Watanuki: ISIJ Int., 2003, 43, 520–6.

    Article  Google Scholar 

  23. K. Takai et al.: Acta Mater., 2008, 56, 5158–67.

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful for the financial support from the Deutsche Forschungsgemeinschaft (KI 230/39-1) and the State of Lower Saxonia (Niedersachsenprofessur).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Kirchheim.

Additional information

Manuscript submitted February 10, 2015.

Appendices

Appendix A

1.1 Approximate Solutions for the Desorption Rate J m/c o of Non-saturated Mono-energetic Traps

The maximum desorption rate is derived from Eq. [37]

$$ \left[ {\frac{\partial \ln J}{\partial T} - \frac{Q}{{RT^{2} }}} \right] = - \frac{{\pi^{2} }}{{l^{2} }}\frac{{D_{\text{f}} }}{{\theta \left( {1 + \frac{{c_{{{\text{t}}0}} }}{{c_{0} y_{\text{t}} }}} \right)}} - \frac{{E_{\text{t}} }}{{RT^{2} \left( {1 + \frac{{c_{0} y_{\text{t}} }}{{c_{{{\text{t}}0}} }}} \right)}}. $$
(A1)

For the limiting case of weak trapping or

$$ \frac{{c_{\text{to}} }}{{c_{\text{o}} y_{1} }} \ll 1 $$
(A2)

Equation [A1] reduces to

$$ \left[ {\frac{\partial \ln J}{\partial T} - \frac{Q}{{RT^{2} }}} \right] = - \frac{{\pi^{2} }}{{l^{2} }}\frac{{D_{\text{f}} }}{\theta } $$
(A3)

with the solution

$$ J(T) = J(T_{\text{o}} )\exp \left[ { - \frac{{\pi^{2} }}{{\theta l^{2} }}\int\limits_{{T_{\text{o}} }}^{T} {D_{\text{f}} {\text{d}}T} - \frac{Q}{RT}} \right] = \frac{{J(T_{\text{o}} )}}{{D_{\text{o}} }}D_{\text{f}} \exp \left[ { - \frac{{\pi^{2} }}{{\theta l^{2} }}\int\limits_{{T_{\text{o}} }}^{T} {D_{\text{f}} {\text{d}}T} } \right]. $$
(A4)

1.2 Large Trap Concentration and/or Large Trap Energy

Defined as

$$ \frac{{c_{\text{to}} }}{{c_{\text{o}} y_{1} }} \gg 1 $$
(A5)

Equation [A1] reduces to

$$ \frac{\partial \ln J}{\partial T} = - \frac{{E_{\text{t}} - Q}}{{RT^{2} }} $$
(A6)

with the solution

$$ \ln \frac{J}{{J(T_{\text{o}} )}} = + \frac{{E_{\text{t}} - Q}}{R}\left( {\frac{1}{T} - \frac{1}{{T_{\text{o}} }}} \right). $$
(A7)

Equation [25] and the definition of the filling factor f in Section III–E yields

$$ J(T_{\text{o}} ) = \frac{\pi }{l}c_{\text{f}} (T_{\text{o}} )D_{\text{f}} (T_{\text{o}} ) = \frac{\pi }{l}c_{\text{o}} fy_{\text{t}} (T_{\text{o}} )D_{\text{f}} (T_{\text{o}} ), $$
(A8)

which is inserted in Eq. [A7] leading to the final result for T = T m

$$ J_{\text{m}} = f\frac{{\pi c_{\text{o}} }}{l}D_{\text{o}} \exp \left( {\frac{{E_{\text{t}} - Q}}{{RT_{\text{m}} }}} \right) = f\frac{{\pi c_{\text{o}} }}{l}D_{\text{f}} (T_{\text{m}} )y_{\text{t}} (T_{\text{m}} ). $$
(A9)

In the following, a box-type distribution is assumed, where for the case of non-saturated traps Eq. [45] was derived as

$$ \begin{aligned} \frac{\partial \ln J}{\partial T}\left[ {1 + \int\limits_{E1}^{E2} {\exp \left( {\frac{ - E}{RT}} \right)\frac{{c_{\text{to}} }}{{\left( {E_{1} - E_{2} } \right)c_{\text{o}} }}{\text{d}}E} } \right] \hfill \\ = \frac{Q}{{RT^{2} }} - \frac{{\pi^{2} D_{\text{f}} }}{{\theta l^{2} }} - \int\limits_{E1}^{E2} {\frac{E - Q}{{RT^{2} }}\exp \left( {\frac{ - E}{RT}} \right)\frac{{c_{\text{to}} }}{{\left( {E_{1} - E_{2} } \right)c_{\text{o}} }}{\text{d}}E} \hfill \\ \end{aligned}. $$
(A10)

Strong trapping is defined as

$$ \int\limits_{E1}^{E2} {\exp \left( {\frac{ - E}{RT}} \right)\frac{{c_{\text{to}} }}{{\left( {E_{1} - E_{2} } \right)c_{\text{o}} }}{\text{d}}E} \gg 1 $$
(A11)

leading to

$$ \begin{aligned} \frac{\partial \ln J}{\partial T} & \approx \frac{{ - \int\limits_{E1}^{E2} {\frac{E - Q}{{RT^{2} }}\exp \left( {\frac{ - E}{RT}} \right){\text{d}}E} }}{{\int\limits_{E1}^{E2} {\exp \left( {\frac{ - E}{RT}} \right){\text{d}}E} }} \\ & = \frac{{\left( {E_{2} - Q - RT} \right)\exp \left( {\frac{{ - E_{2} }}{RT}} \right) - \left( {E_{1} - Q - RT} \right)\exp \left( {\frac{{ - E_{1} }}{RT}} \right)}}{{RT^{2} \left[ {\exp \left( {\frac{{ - E_{2} }}{RT}} \right) - \exp \left( {\frac{{ - E_{1} }}{RT}} \right)} \right]}}. \\ \end{aligned} . $$
(A12)

For broad distributions defined as \( \exp \left( {\frac{{ - E_{2} }}{RT}} \right) \gg \exp \left( {\frac{{ - E_{1} }}{RT}} \right) \) and Eq. [A12] yields

$$ \frac{\partial \ln J}{\partial T} = \frac{{\left( {E_{2} - Q - RT} \right)}}{{RT^{2} }}. $$
(A13)

Integration of Eq. [A13] gives

$$ \frac{J(T)}{{J(T_{\text{o}} )}} = \frac{{T_{\text{o}} }}{T}\exp \left[ {\left( {\frac{{E_{2} - Q}}{R}} \right)\left( {\frac{1}{T} - \frac{1}{{T_{0} }}} \right)} \right]. $$
(A14)

As for mono-energetic traps (Eq. [A8]), the box distribution gives for low coverage of traps (cf. Eq. [20] for f ≪ 1)

$$ J(T_{\text{o}} ) = \frac{\pi }{l}c_{\text{f}} (T_{\text{o}} )D_{\text{f}} (T_{\text{o}} ) = \frac{\pi }{l}c_{\text{o}} \frac{{f\left( {E_{2} - E_{1} } \right)}}{{RT_{\text{o}} }}\exp \left[ {\frac{{E_{2} }}{{RT_{\text{o}} }}} \right]D_{\text{f}} (T_{\text{o}} ). $$
(A15)

Inserting Eq. [A15] in Eq. [A16] yields

$$ J(T) = \frac{{T_{\text{o}} }}{T}\exp \left( {\frac{{E_{2} - Q}}{RT}} \right)\frac{\pi }{l}c_{\text{o}} \frac{{f\left( {E_{2} - E_{1} } \right)}}{{RT_{\text{o}} }}D_{\text{fo}} $$
(A16)

or

$$ \ln J(T) = \frac{{E_{2} - Q}}{RT} + \ln \frac{{f\pi c_{\text{o}} D_{\text{fo}} \left( {E_{2} - E_{1} } \right)}}{lRT}. $$
(A17)

Appendix B

2.1 Approximate Solutions for Minima of TDS-Data

In the following, it will be assumed that hydrogen could be in two traps besides being free. Thus, three peaks are expected with two minima in between and Eq. [13] applies

$$ \frac{{D_{\text{f}} }}{\theta }\frac{{\partial^{2} c_{\text{f}} }}{{\partial x^{2} }} - \frac{{c_{{{\text{t}}10}} c_{\text{f}} y_{1} E_{{1{\text{t}}}} }}{{RT_{\hbox{min} }^{2} c_{0} \left( {y_{1} + c_{\text{f}} } \right)^{2} }} - \frac{{c_{{{\text{t}}20}} c_{\text{f}} y_{2} E_{{2{\text{t}}}} }}{{RT_{\hbox{min} }^{2} c_{0} \left( {y_{2} + c_{\text{f}} } \right)^{2} }} = 0. $$
(B1)

Applying the cosinusoidal profile for c f as given by Eq. [24] yields

$$ - \frac{{D_{\text{f}} }}{\theta }\frac{{\pi^{2} c_{\text{fm}} }}{{l^{2} }} - \frac{{c_{{{\text{t}}10}} c_{\text{fm}} y_{1} E_{{1{\text{t}}}} }}{{RT_{\hbox{min} }^{2} c_{0} \left( {y_{1} + c_{\text{fm}} } \right)^{2} }} - \frac{{c_{{{\text{t}}20}} c_{\text{fm}} y_{2} E_{{2{\text{t}}}} }}{{RT_{\hbox{min} }^{2} c_{0} \left( {y_{2} + c_{\text{fm}} } \right)^{2} }} = 0. $$
(B2)

At the first minimum between the first and second TDS-peak, the condition c fm ≫ y 1 ≫ y 2 holds and the last equation becomes

$$ \frac{{D_{\text{f}} }}{\theta }\frac{{\pi^{2} c_{\text{fm}} }}{{l^{2} }} = - \frac{{c_{{{\text{t}}10}} y_{1} E_{{1{\text{t}}}} }}{{RT^{2} c_{0} c_{\text{fm}} }}. $$
(B3)

Using J min for c fm as defined by Eq. [25] gives

$$ \frac{{J_{\hbox{min} }^{2} T_{\hbox{min} }^{2} }}{\theta } = \frac{{D_{\text{f}} c_{{{\text{t}}10}} y_{1} E_{{1{\text{t}}}} }}{{Rc_{0} }} $$
(B4)

or

$$ \ln \frac{{J_{\hbox{min} }^{2} T_{\hbox{min} }^{2} }}{\theta } = \frac{{E_{{1{\text{t}}}} - Q}}{{RT_{\hbox{min} } }} + \ln \frac{{D_{\text{o}} y_{{{\text{o}}1}} c_{{{\text{t}}10}} E_{{1{\text{t}}}} }}{{Rc_{0} }}. $$
(B5)

At the second minimum between the second and third peak, the condition y 1 ≫ c fm ≫ y 2 applies and Eq. [B2] gives

$$ - \frac{{D_{\text{f}} }}{\theta }\frac{{\pi^{2} c_{\text{fm}} }}{{l^{2} }} - \frac{{c_{{{\text{t}}20}} y_{2} E_{{2{\text{t}}}} }}{{RT^{2} c_{0} c_{\text{fm}} }} = 0. $$
(B6)

Thus analogously to Eq. [B5], the following relation holds

$$\ln \frac{J_{\hbox{min}}^{2} T_{\hbox{min}}^{2}}{\theta} = \frac{E_{{2{\hbox{t}}}} - Q} {RT_{\hbox{min}}} + \ln \frac{D_{\hbox{o}} y_{{\hbox{o}}2} c_{{\hbox{t}}20} E_{2{\hbox{t}}}}{Rc_{0}}. $$
(B7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchheim, R. Bulk Diffusion-Controlled Thermal Desorption Spectroscopy with Examples for Hydrogen in Iron. Metall Mater Trans A 47, 672–696 (2016). https://doi.org/10.1007/s11661-015-3236-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3236-2

Keywords

Navigation