Skip to main content
Log in

Pore-Scale Level Set Simulations of Capillary-Controlled Displacement with Adaptive Mesh Refinement

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Multiphase flow simulations on imaged porous rock structures require numerical methods that are accurate and robust when applied on complex geometries. A key element in this context is to investigate how simulations behave under grid refinement. In this work, we couple an existing software for structured adaptive mesh refinement (AMR) and parallelism to a previously developed level set method for capillary-controlled displacement on the pore scale. The level set method accounts for wettability by using different evolution velocities in pore and solid space rather than implementing it as a boundary condition on the pore walls. We perform simulations with up to three nested refinement levels on idealized pore geometries to validate the AMR technology. Based on simulations, we identify suitable cell refinement criteria for our applications. We demonstrate effects of AMR in simulations relevant for drainage in porous media, such as in the computation of capillary entry pressures in pore throats with different shapes and wetting states, and obtain excellent agreement with analytic results. Finally, we investigate the effects of AMR during simulation of quasi-static drainage on sandstone. The comparison of capillary equilibrium fluid configurations, capillary pressure, and specific fluid/fluid interfacial area–saturation relationships for drainage with and without AMR shows differences that diminish for less water-wet states. The general behavior is that the capillary pressure and interfacial area for a given saturation increase in simulations with AMR. The largest deviation occurs for small water saturations, suggesting AMR can be an important component in simulation tools to describe more accurately capillary behavior in the low water saturation regime where interface curvature is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The sample containing 200\(^3\) voxels was also used by Helland et al. (2017), where a typing error in the text introduced an erroneous porosity of \(29\%\). The correct value is \(22.7\%\).

References

  • Adams, M., Colella, P., Graves, D.T., Johnson, J.N., Johansen, H.S., Keen, N.D., Ligocki, T.J., Martin, D.F., McCorquodale, P.W., Modiano, D., Schwartz, P.O., Sternberg, T.D., Van Straalen, B.: Chombo software package for AMR applications—design document. Technical Report LBNL-6616E, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (2015)

  • Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., Durner, W.: Prediction of capillary hysteresis in a porous material using lattice-boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Resour. 31, 1151–1173 (2008)

    Article  Google Scholar 

  • Alpak, F., Samardžić, A., Frank, F.: A distributed parallel direct simulator for pore-scale two-phase flow on digital rock images using a finite difference implementation of the phase-field method. J. Pet. Sci. Eng. 166, 806–824 (2018). https://doi.org/10.1016/j.petrol.2017.11.022

    Article  Google Scholar 

  • AlRatrout, A., Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Automatic measurement of contact angle in pore-space images. Adv. Water Resour. 109, 158–169 (2017). https://doi.org/10.1016/j.advwatres.2017.07.018

    Article  Google Scholar 

  • Anderson, R.W., Arrighi, W.J., Elliott, N.S., Gunney, B.T., Hornung, R.D.: SAMRAI concepts and software design. Technical Report LLNL-SM-617092-DRAFT, Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA (2013)

  • Andrew, M., Menke, H., Blunt, M.J., Bijeljic, B.: The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp. Porous Med. 110, 1–24 (2015). https://doi.org/10.1007/s11242-015-0553-2

    Article  Google Scholar 

  • Armstrong, R.T., Porter, M.L., Wildenschild, D.: Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 55–62 (2012). https://doi.org/10.1016/j.advwatres.2012.05.009

    Article  Google Scholar 

  • Baden, S.B., Chrisochides, N.P., Gannon, D.B., Norman, M.L.: Structured Adaptive Mesh Refinement (SAMR) Grid Methods. Springer, New York, NY (1999)

    Google Scholar 

  • Bandara, U.C., Tartakovsky, A.M., Oostrom, M., Palmer, B.J., Grate, J., Zhang, C.: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv. Water Resour. 62, 356–369 (2013). https://doi.org/10.1016/j.advwatres.2013.09.014

    Article  Google Scholar 

  • Bear, J., Bachmat, Y.: Mass transport of multiple fluid phases under isothermal conditions. In: Introduction to Modeling of Transport Phenomena in Porous Media. Theory and Applications of Transport in Porous Media, vol. 4, pp. 327–398. Springer, Dordrecht (1990) https://doi.org/10.1007/978-94-009-1926-6_5

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwartz, J.O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA 110, 3755–3759 (2013). https://doi.org/10.1073/pnas.1221373110

    Article  Google Scholar 

  • Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  Google Scholar 

  • Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 482–512 (1984)

    Article  Google Scholar 

  • Berger, M.J., Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cybern. 21(5), 1278–1286 (1991)

    Article  Google Scholar 

  • Boek, E.S., Zacharoudiou, I., Gray, F., Shah, S.M., Crawshaw, J.P., Yang, J.: Multiphase-flow and reactive-transport validation studies at the pore scale by use of lattice Boltzmann computer simulations. SPE J. 22, 940–949 (2017). https://doi.org/10.2118/170941-PA

    Article  Google Scholar 

  • Bultreys, T., Lin, Q., Raeini, A.Q., AlRatrout, A., Bijeljic, B., Blunt, M.J.: Validation of model predictions of pore-scale fluid distributions during two-phase flow. Phys. Rev. E 97, 053104 (2018). https://doi.org/10.1103/PhysRevE.97.053104

    Article  Google Scholar 

  • Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011). https://doi.org/10.1137/100791634

    Article  Google Scholar 

  • Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S. Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E., Camp, D., Rübel, O., Durant, M., Favre, J., Navrátil, V.: VisIt: An end-user tool for visualizing and analyzing very large data. In: High Performance Visualization—Enabling Extreme-Scale Scientific Insight, pp. 357–372 (2012)

  • Gunney, B.T.N., Wissink, A.M., Hysom, D.A.: Parallel clustering algorithms for structured amr. J. Parallel Distrib. Comput. 66(11), 1419–1430 (2006)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)

    Article  Google Scholar 

  • Helland, J.O., Friis, H.A., Jettestuen, E., Skjæveland, S.M.: Footprints of spontaneous fluid redistribution on capillary pressure in porous rock. Geophys. Res. Lett. 44, 4933–4943 (2017). https://doi.org/10.1002/2017GL073442

    Article  Google Scholar 

  • Helland, J.O., Jettestuen, E.: Mechanisms for trapping and mobilization of residual fluids during capillary-dominated three-phase flow in porous rock. Water Resour. Res. 52, 5376–5392 (2016). https://doi.org/10.1002/2016WR018912

    Article  Google Scholar 

  • Hilfer, R., Øren, P.E.: Dimensional analysis of pore scale and field scale immiscible displacement. Transp. Porous Med. 22, 53–72 (1996). https://doi.org/10.1007/BF00974311

    Article  Google Scholar 

  • Hilpert, M., Miller, C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24, 243–255 (2001)

    Article  Google Scholar 

  • Hornung, R.D., Kohn, S.R.: Managing application complexity in the SAMRAI object-oriented framework. Concurr. Comput. Pract. Exp. 14, 347–368. http://www.llnl.gov/CASC/SAMRAI] (2002)

  • Hornung, R.D., Wissink, A.M., Kohn, S.R.: Managing complex data and geometry in parallel structured AMR applications. Eng. Comput. 22, 181–195 (2006)

    Article  Google Scholar 

  • Iglauer, S., Fernø, M.A., Shearing, P., Blunt, M.J.: Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. J. Colloid Interface Sci. 375, 187–192 (2012). https://doi.org/10.1016/j.jcis.2012.02.025

    Article  Google Scholar 

  • Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49, 4645–4661 (2013). https://doi.org/10.1002/wrcr.20334

    Article  Google Scholar 

  • Lago, M., Araujo, M.: Threshold pressure in capillaries with polygonal cross section. J. Colloid Interface Sci. 243, 219–226 (2001)

    Article  Google Scholar 

  • Lin, Q., Bijeljic, B., Rieke, H., Blunt, M.J.: Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography. Water Resour. Res. 53, 7457–7468 (2017). https://doi.org/10.1002/2017WR021083

    Article  Google Scholar 

  • Liu, Z., Herring, A., Arns, C., Berg, S., Armstrong, R.T.: Pore-scale characterization of two-phase flow using integral geometry. Transp. Porous Med. 118, 99–117 (2017). https://doi.org/10.1007/s11242-017-0849-5

    Article  Google Scholar 

  • Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2006)

    Article  Google Scholar 

  • Ma, S., Mason, G., Morrow, N.R.: Effect of contact angle on drainage and imbibition in regular polygonal tubes. Colloids Surf. A Phys. Eng. Asp. 117, 273–291 (1996)

    Article  Google Scholar 

  • Mason, G., Morrow, N.R.: Effect of contact angle on capillary displacement curvatures in pore throats formed by spheres. J. Colloid Interface Sci. 168, 130–141 (1994)

    Article  Google Scholar 

  • Mayer, R.P., Stowe, R.A.: Mercury porosimetry—breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 20, 893–911 (1965)

    Article  Google Scholar 

  • Nair, N., Koelman, J.V.: An ising-based simulator for capillary action in porous media. Transp. Porous Med. 124, 413–437 (2018). https://doi.org/10.1007/s11242-018-1075-5

    Article  Google Scholar 

  • Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224(2), 836–866 (2007)

    Article  Google Scholar 

  • Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    Book  Google Scholar 

  • Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)

    Article  Google Scholar 

  • Porter, M.L., Wildenschild, D., Grant, G., Gerhard, J.I.: Measurements and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system. Water Resour. Res. 46, W08512 (2010). https://doi.org/10.1029/2009WR007786

    Article  Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders. I. Capillary rise between two cylinders. J. Colloid Interface Sci 30(1), 69–75 (1969a)

    Article  Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders. II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30(3), 359–371 (1969b)

    Article  Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders. III. Liquid columns between horizontal parallell cylinders. J. Colloid Interface Sci. 34(2), 171–184 (1970)

    Article  Google Scholar 

  • Prodanović, M., Bryant, S.L.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304, 442–458 (2006)

    Article  Google Scholar 

  • Prodanović, M., Bryant, S.L., Davis, J.S.: Numerical simulation of diagenetic alteration and its effect on residual gas in tight gas sandstones. Transp. Porous Med. 96, 39–62 (2013). https://doi.org/10.1007/s11242-012-0072-3

    Article  Google Scholar 

  • Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Adv. Water Resour. 83, 102–110 (2015). https://doi.org/10.1016/j.advwatres.2015.05.008

    Article  Google Scholar 

  • Ramstad, T., Øren, P., Bakke, S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method. SPE J. 15, 917–927 (2010). https://doi.org/10.2118/124617-PA

    Article  Google Scholar 

  • Schlüter, S., Berg, S., Rücker, M., Vogel, R.T.A.H.J., Hilfer, R., Wildenschild, D.: Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media. Water Resour. Res. 52, 2194–2205 (2016). https://doi.org/10.1002/2015WR018254

    Article  Google Scholar 

  • Sheppard, A., Schroeder-Turk, G.: Network Generation Comparison Forum [Data set]. Digital Rocks Portal (2015). https://doi.org/10.17612/P7059V

  • Shikhov, I., Arns, C.H.: Evaluation of capillary pressure methods via digital rock simulations. Transp. Porous Med. 107, 623–640 (2015). https://doi.org/10.1007/s11242-015-0459-z

    Article  Google Scholar 

  • Shikhov, I., d’Eurydice, M.N., Arns, J.-Y., Arns, C.H.: An experimental and numerical study of relative permeability estimates using spatially resolved \(t_1\)-\(z\) NMR. Transp. Porous Med. 118, 225–250 (2017). https://doi.org/10.1007/s11242-017-0855-7

    Article  Google Scholar 

  • Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J., Bijeljic, B.: Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 7, 5192 (2017). https://doi.org/10.1038/s41598-017-05204-4

    Article  Google Scholar 

  • Strain, J.: Tree methods for moving interfaces. J. Comput. Phys. 151, 616–648 (1999)

    Article  Google Scholar 

  • Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  Google Scholar 

  • Verma, R., Icardi, M., Prodanović, M.: Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches. J. Contam. Hydrol. 212, 115–133 (2018). https://doi.org/10.1016/j.jconhyd.2018.01.002

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Research Council of Norway under Petromaks2 project 234131/E30 “Three-phase capillary pressure, hysteresis, and trapping in mixed-wet rock” and ConocoPhillips through the research center COREC. Maša Prodanović acknowledges support from NSF EAR CAREER Grant 1255622. The computations (Sects. 46) were performed on resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway. We acknowledge PRACE for awarding us access to MareNostrum 4 at Barcelona Supercomputing Center (BSC), Spain, which made it possible to explore scaling behavior of our code with a large number of CPUs (Appendix A). Rahul Verma (UT Austin) provided the sphere pack pore geometry files used in Sect. 5.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Olav Helland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Scaling results

We performed a strong scaling test to demonstrate the capabilities of our LS code in massively parallel environments using the compute resource MareNostrum 4 at Barcelona Supercomputing Center (BSC, Spain). We consider a benchmark simulation on a domain containing \(750 \times 750 \times 752\) grid cells. The simulation consists of two initial solves of the reinitialization equation to construct the signed distance functions for both the pore geometry and the initial fluid configuration. This is followed by 20 iteration–time steps with the main LS evolution equation, where a reinitialization occurs after the 10th and 20th iteration–time step to ensure that the fluid LS function maintains a signed distance function throughout the interface evolution. All the reinitialization solves use 10 iteration steps each. Thus, overall the simulation constitutes 60 iterations, of which 20 are main LS iteration–time steps and 40 are reinitialization iterations. These fractions are representative for a typical usage of our code. To determine the strong scaling behavior, we ran the simulation four times using an increasing number of cores, ranging from 264 to 2112. Figure 18 shows that the strong scaling test provides an excellent speedup for an increased number of cores.

Fig. 18
figure 18

Speedup normalized to 264 cores versus number of cores from the strong scaling tests

Appendix B: Curvature data in sphere pack pore throats

See Tables 1, 2, 3 and 4.

Table 1 Analytic and simulated data in a sphere pack pore throat with \(\gamma =31^{\circ }\)
Table 2 Analytic and simulated data in a sphere pack pore throat with \(\gamma =35^{\circ }\)
Table 3 Analytic and simulated data in a sphere pack pore throat with \(\gamma =40^{\circ }\)
Table 4 Analytic and simulated data in a sphere pack pore throat with \(\gamma =45^{\circ }\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friis, H.A., Pedersen, J., Jettestuen, E. et al. Pore-Scale Level Set Simulations of Capillary-Controlled Displacement with Adaptive Mesh Refinement. Transp Porous Med 128, 123–151 (2019). https://doi.org/10.1007/s11242-019-01238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01238-6

Keywords

Navigation