Skip to main content
Log in

Measurement and Quantification of Diffusion-Induced Compositional Variations in Absence of Convective Mixing at Reservoir Conditions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present numerical and experimental investigation on the existence of diffusion-induced compositional variations in a reservoir fluid in the absence of convective mixing. New pressure-decay experimental data are presented for ethane in contact with stock tank oil, and the values of diffusivity and solubility parameters are obtained by using the one-dimensional transient diffusion model and integral-based regression method. We show the variation in oil composition through composition-height measurements at the end of the experiment. Finally, the diffusion model with estimated parameters is used to predict the compositional variations, where comparisons show excellent agreement with the measurements, validating the parameter estimation technique and quantifying the compositional variations in the oil phase caused by diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

STO:

Stock tank oil

GC:

Gas chromatography

LTS:

Late transient solution

ET:

Early transient solution

References

  • Adelstein, S.J., Manning, F.J. (eds.): Isotopes for Medicine and the Life Sciences. Committee on Biomedical Isotopes and Institute of Medicine. National Academic Press, Washington (1995)

  • Anthea, M., Hopkins, J., Johnson, S., et al.: Cells Building Blocks of Life, pp. 66–67. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, Hoboken (2001)

    Google Scholar 

  • Boustani, A., Maini, B.B.: The role of diffusion and convective dispersion in vapor extraction process. J. Can. Pet. Technol. 40, 68 (2001)

    Article  Google Scholar 

  • Campbell, B.T., Orr, F.M.: Flow visualization of CO2-crude oil mixtures. Soc. Pet. Eng. J. 25(5), 665–678 (1985)

    Article  Google Scholar 

  • Civan, F., Rasmussen, M.L.: Accurate measurement of gas diffusivity in oil and brine under reservoir conditions. SPE-67319-MS (2001)

  • Civan, F., Rasmussen, M.L.: Improved measurement of gas diffusivity for miscible gas flooding under nonequilibrium versus equilibrium conditions. SPE-75135-MS (2002)

  • Civan, F., Rasmussen, M.L.: Analysis and interpretation of gas diffusion in quiescent reservoir, drilling and completion fluids: equilibrium versus non-equilibrium models. SPE-84072-MS (2003)

  • Creux, P., Meyer, V., Cordelier, P.R., et al: Diffusivity in heavy oils. SPE-97798-MS (2005)

  • Dindoruk, B.: Emerging oil regions: Brazil, the Arctic, and West Africa—and the role of fluid properties. The Way Ahead 7, 15–17 (2011)

    Article  Google Scholar 

  • Dindoruk, B., Kindi, A.: A case study of dynamic modeling of multiple regionally-extensive reservoirs using a unified fluid description. J. Pet. Sci. Eng. 78, 748–758 (2011)

    Article  Google Scholar 

  • Etminan, S.R, Maini, B.B., Hassanzadeh, H., Chen, Z.J.: Determination of concentration dependent diffusivity coefficient in solvent gas heavy oil systems. SPE-124832-MS (2009)

  • Froment, G.F., Bischoff, K.B.: Chemical Reactor Analysis and Design, 2nd edn. Wiley, Hoboken (1990)

    Google Scholar 

  • Grogan, A.T., Pinczewski, W.V.: The role of molecular diffusion processes in tertiary CO2 flooding. J. Pet. Technol. 38(5), 591–602 (1987)

    Article  Google Scholar 

  • Harstad, K., Bellan, J.: High-pressure binary mass diffusion coefficients for combustion applications. Ind. Eng. Chem. Res. 43(2), 645–654 (2004)

    Article  Google Scholar 

  • Heck, R.M., Farrauto, R.J.: Catalytic Air Pollution Control: Commercial Technology. Wiley, Hoboken (2009)

    Book  Google Scholar 

  • Huang, E.T.S., Tracht, J.H.: The displacement of residual oil by carbon dioxide. SPE-4735-MS (1974)

  • Jackson, R.: Transport in Porous Catalyst. Chemical Engineering Monographs, vol. 4. Elsevier Science Ltd, Amsterdam (1977)

    Google Scholar 

  • Kumar, P., Gu, T., Grigoriadis, K., et al.: Spatio-temporal dynamics of oxygen storage and release in a three-way catalytic converter. Chem. Eng. Sci. 111, 180–190 (2014)

    Article  Google Scholar 

  • Li, X., Yortsos, Y.C.: Theory of multiple bubble growth in porous media by solute diffusion. Chem. Eng. Sci. 50(8), 1247 (1995)

    Article  Google Scholar 

  • Neogi, P.: Diffusion in Polymers. Marcel Dekker Inc, New York (1996)

    Google Scholar 

  • Policarpo, N.A., Ribeiro, P.R.: Experimental measurement of gas–liquid diffusivity. Braz. J. Pet. Gas 5(3), 171–188 (2011)

    Article  Google Scholar 

  • Ratnakar, R.R., Balakotaiah, V.: Coarse-graining of diffusion–reaction models with catalyst archipelagos. Chem. Eng. Sci. 110, 44–54 (2014)

    Article  Google Scholar 

  • Ratnakar, R.R., Balakotaiah, V.: Reduced order multimode transient models for catalytic monoliths with micro-kinetics. Chem. Eng. J. 260, 557–572 (2015)

    Article  Google Scholar 

  • Ratnakar, R.R., Dindoruk, B.: Measurement of gas diffusivity in heavy oils and bitumens by use of pressure-decay test and establishment of minimum time criteria for experiments. SPE J. 20, 1–167 (2015)

    Article  Google Scholar 

  • Ratnakar, R.R., Dindoruk, B.: On the exact representation of pressure decay tests: new modeling and experimental data for diffusivity measurement in gas–oil/bitumen systems. SPE-181514-MS (2016)

  • Ratnakar, R.R., Dindoruk B.: Analysis and interpretation of pressure-decay tests for gas/bitumen and oil/bitumen systems: methodology development and application of new linearized and robust parameter-estimation technique using laboratory data. SPE J. SPE-181514-PA (2018)

  • Ratnakar, R.R., Bhattacharya, M., Balakotaiah, V.: Reduced order models for describing dispersion and reaction in monoliths. Chem. Eng. Sci. 83, 77–92 (2012)

    Article  Google Scholar 

  • Ratnakar, R.R., Kalia, N., Balakotaiah, V.: Modeling, analysis and simulation of wormhole formation in carbonate rocks with in situ cross-linked acids. Chem. Eng. Sci. 90, 179–199 (2013)

    Article  Google Scholar 

  • Riazi, M.R.: A new method for experimental measurement of diffusion coefficients in reservoir fluids. J. Pet. Sci. Eng. 14, 235–250 (1996)

    Article  Google Scholar 

  • Sachs, W.: The diffusional transport methane in liquid water: method and result of experimental investigation at elevated pressure. J. Pet. Sci. Eng. 21, 53–164 (1998)

    Article  Google Scholar 

  • Sheikha, H., Pooladi-Darvish, M., Mehrotra, A.K.: Development of graphical methods for estimating the diffusivity coefficient of gases in bitumen from pressure-decay data. Energy Fuels 19, 2041–2049 (2005)

    Article  Google Scholar 

  • Shelton, J.L., Schneider, F.N.: The effects of water injection on miscible flooding methods using hydrocarbons and carbon dioxide. Soc. Pet. Eng. J. 15(3), 217–226 (1975)

    Article  Google Scholar 

  • Stalkup, F.J.: Displacement of oil by solvent at high water saturation. Soc. Pet. Eng. J. 10(4), 337–348 (1970)

    Article  Google Scholar 

  • Ting, D., Dindoruk, B., Ratulowski, J.: Numerical investigation of gravitational compositional grading in hydrocarbon reservoirs using centrifuge data. SPE Reserv. Eval. Eng. 12, 793–802 (2009)

    Article  Google Scholar 

  • Yang, C., Gu, Y.: Diffusion coefficients and oil swelling factor of carbon dioxide, methane, ethane, propane, and their mixtures in heavy oil. Fluid Phase Equilib. 243, 64 (2006)

    Article  Google Scholar 

  • Yanze, Y., Clemens, T.: The role of diffusion for nonequilibrium gas injection into a fractured reservoir. SPE Reserv. Eval. Eng. 15(1), 60–71 (2012)

    Article  Google Scholar 

  • Zamanian, E., Hemmati, M., Beiranvand, M.S.: Determination of gas-diffusion and interface-mass-transfer coefficients in fracture-heavy oil saturated porous matrix system. Nafta Sci. J. 63, 351–358 (2012)

    Google Scholar 

  • Zhang, Y.P., Hyndman, C.L., Maini, B.B.: Measurement of gas diffusivity in heavy oils. J. Pet. Sci. Eng. 25, 37–47 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Shell International Exploration and Production Inc. for granting the permission to publish the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram R. Ratnakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Composition and PVT Properties of the Oil

Appendix: Composition and PVT Properties of the Oil

Here, we list the PVT and other key properties of the STO used in the study.

See Table 3.

Table 3 Composition, API and viscosity of stock tank oil (STO)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnakar, R.R., Dindoruk, B., Odikpo, G. et al. Measurement and Quantification of Diffusion-Induced Compositional Variations in Absence of Convective Mixing at Reservoir Conditions. Transp Porous Med 128, 29–43 (2019). https://doi.org/10.1007/s11242-019-01233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01233-x

Keywords

Navigation