Skip to main content
Log in

Experimental Investigation on Transport Properties of Cement-Based Materials Incorporating 2D Crack Networks

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper investigates the correlation between the geometry of crack networks and the altered transport properties of cement-based porous materials. Cracks were artificially introduced into slice specimens to obtain bidimensional (2D) crack networks, and the network was characterized by the crack density, orientation, connectivity and crack opening aperture. For the permeability, the water vapor sorption isotherms were measured and an algorithm was established to solve the intrinsic permeability of cracked specimens with the help of moisture transport modeling and the data of drying tests. The electrical conductivity of cracked specimens was measured using an alternative current method. The study on the specimens with percolated cracks shows that: (1) the pertinent geometry parameters for altered transport properties include average-based crack density, crack opening and local crack connectivity; (2) the water permeability of cracked specimens is correlated to the combination \(b^{1.7}\rho f\) and electrical conductivity to \(b^{0.45}\rho f\); (3) the different exponents on the crack opening/length ratio reflect the resistance of tortuosity of crack paths to the water and current flow and this resistance is stronger for current flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adler, P.M., Thovert, J.-F., Mourzenko, V.V.: Fractured Porous Media. Oxford University Press, London (2012)

    Book  Google Scholar 

  • Akhavan, A., Shafaatian, S.M.H., Rajabipour, F.: Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem. Concr. Res. 42(2), 313–320 (2012)

    Article  Google Scholar 

  • Ammouche, A., Riss, J., Breysse, D., Marchand, J.: Image analysis for the automated study of microcracks in concrete. Cem. Concr. Compos. 23(2), 267–278 (2001)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials. Part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem. Concr. Res. 37(3), 414–437 (2007a)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials. Part II: essential tool for assessment of transport properties and for durability prediction. Cem. Concr. Res. 37(3), 438–454 (2007b)

    Article  Google Scholar 

  • Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., Coussy, O.: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Concr. Res. 29(8), 1225–1238 (1999a)

    Article  Google Scholar 

  • Baroghel-Bouny, V., Mainguy, M., Coussy, O.: Isothermal drying process in weakly permeable cementitious materials-assessment of water permeability. In: International Conference on Ion and Mass Transport in Cement-Based Materials, pp. 59–80, At Toronto (1999b)

  • Boulay, C., Dal Pont, S., Belin, P.: Real-time evolution of electrical resistance in cracking concrete. Cem. Concr. Res. 39(9), 825–831 (2009)

    Article  Google Scholar 

  • CEN: Hygrothermal performance of building materials and products-determination of hygroscopic sorption properties, European Standard EN ISO 12571, European Committee for Standardization (CEN), p. 17 (2000)

  • Choinska, M., Khelidj, A., Chatzigeorgiou, G., Pijaudier-Cabot, G.: Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem. Concr. Res. 37(1), 79–88 (2007)

    Article  Google Scholar 

  • Chung, D.D.L.: Damage in cement-based materials, studied by electrical resistance measurement. Mater. Sci. Eng. Rep. 42(1), 1–40 (2003)

    Article  Google Scholar 

  • Ghasemzadeh, F., Pour-Ghaz, M.: Effect of damage on moisture transport in concrete. J. Mater. Civ. Eng. 27(9), 04014242 (2015)

    Article  Google Scholar 

  • Ghasemzadeh, F., Rashetnia, R., Smyl, D., Pour-Ghaz, M.: A comparison of methods to evaluate mass transport in damaged mortar. Cem. Concr. Res. 70, 119–129 (2016)

    Article  Google Scholar 

  • Gui, Q., Qin, M., Li, K.: Gas permeability and electrical conductivity of structural concretes: impact of pore structure and pore saturation. Cem. Concr. Res. 89, 109–119 (2016)

    Article  Google Scholar 

  • Li, L., Li, K.: Permeability of microcracked solids with random crack networks: role of connectivity and opening aperture. Transp. Porous Med. 109, 217–237 (2015)

    Article  Google Scholar 

  • Li, J.H., Zhang, L.M.: Connectivity of a network of random discontinuities. Comput. Geotech. 38(2), 217–226 (2011)

    Article  Google Scholar 

  • Li, K., Ma, M., Wang, X.: Experimental study of water flow behaviour in narrow fractures of cementitious materials. Cem. Concr. Compos. 33(10), 1009–1013 (2011)

    Article  Google Scholar 

  • Li, K., Pang, X., Dangla, P.: Thermo-hydro-ionic transport in sea immersed tube tunnel. Tunn. Undergr. Sp. Tech. 58, 147–158 (2016)

    Article  Google Scholar 

  • Litorowicz, A.: Identification and quantification of cracks in concrete by optical fluorescent microscopy. Cem. Concr. Res. 36(8), 1508–1515 (2006)

    Article  Google Scholar 

  • Mainguy, M.: Modeling of isothermal moisture transport in porous media, application to drying of cement-based materials. Ph.D. Thesis, Ecole Nationale des Ponts et Chausseés, Paris (1999)

  • Mehta, P.K.: Durability of concrete-fifty years of progress? ACI Spec. Publ. 126(1), 1–32 (1991)

    Google Scholar 

  • Ménendez, B., David, C., Darot, M.: A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy. Phys. Chem. Earth Part A. 24(7), 627–632 (1999)

    Article  Google Scholar 

  • Millington, R.J.: Gas diffusion in porous media. Science 130(3367), 100–102 (1959)

    Article  Google Scholar 

  • Newland, M.D., Jones, M.R., Kandasami, S., Harrison, T.A.: Sensitivity of electrode contact solutions and contact pressure in assessing electrical resistivity of concrete. Mater. Struct. 41(4), 621–632 (2008)

    Article  Google Scholar 

  • OIML: The scale of relative humidity of air certified against saturated salt solutions, Recommendation R 121, International Organization of Legal Metrology (OIML), p. 12 (1996)

  • Pane, I., Hansen, W.: Surface characterization of blended cements by \(\text{H}_2\text{ O }\) and \(\text{ N }_2\) sorption isotherms, In: Weiss, J., Kovler, K., Marchand, J., Mindess, S. (eds.) Proceedings of the 1st International Symposium on Advances in Concrete through Science and Engineering, Chicago, RILEM PRO048 (2004)

  • Pavlik, Z., Zumar, J., Medved, I., Cerny, R.: Water vapor adsorption in porous building materials: experimental measurement and theoretical analysis. Transp. Porous Med. 91(3), 939–954 (2012)

    Article  Google Scholar 

  • Pellenq, R.J.-M., Coasne, B., Denoyel, R.O., Coussy, O.: Simple phenomenological model for phase transitions in confined geometry. 2. Capillary condensation/evaporation in cylindrical mesopores. Langmuir 25(3), 1393–1402 (2009)

    Article  Google Scholar 

  • Picandet, V., Khelidj, A., Bellegou, H.: Crack effects on gas and water permeability of concretes. Cem. Concr. Res. 39(6), 537–547 (2009)

    Article  Google Scholar 

  • Poyet, S.: Determination of the intrinsic permeability to water of cementitious materials: influence of the water retention curve. Cem. Concr. Compos. 35(1), 127–135 (2013)

    Article  Google Scholar 

  • Rajabipour, F., Weiss, J.: Electrical conductivity of drying cement paste. Mater. Struct. 40(10), 1143–1160 (2007)

    Article  Google Scholar 

  • Reinhardt, H.W., Jooss, M.: Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem. Concr. Res. 33(7), 981–985 (2003)

    Article  Google Scholar 

  • Robinson, P.C.: Numerical calculations of critical densities for lines and planes. J. Phys. A. 17(14), 2823–2830 (1984)

    Article  Google Scholar 

  • Shafiro, B., Kachanov, M.: Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J. Appl. Phys. 87(12), 8561–8569 (2000)

    Article  Google Scholar 

  • Smyl, D., Rashetnia, R., Seppänen, A., Pour-Ghaza, M.: Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks? Cem. Concr. Res. 91, 61–72 (2017)

    Article  Google Scholar 

  • Song, Y., Davy, C.A., Kim, T.N., Troadec, D., Hauss, G., Jeannin, L., Adler, P.M.: Two-scale analysis of a tight gas sandstone. Phys. Rev. E 94, 043316 (2016)

    Article  Google Scholar 

  • Streeter, V.L., Wylie, E.B., Bedford, K.W.: Fluid Mechanics. McGraw-Hill, New York (1998)

    Google Scholar 

  • Tang, S.W., Yao, Y., Andrade, C., Li, Z.J.: Recent durability studies on concrete structure. Cem. Concr. Res. 78, 143–154 (2015)

    Article  Google Scholar 

  • Torrijos, M.C., Giaccio, G., Zerbino, R.: Internal cracking and transport properties in damaged concretes. Mater. Struct. 43(1), 109–121 (2010)

    Article  Google Scholar 

  • Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Vries, D.A., Kruger, A.J.: On the value of the diffusion coefficient of water vapor in air. Proc. du Colloque international du CNRS No.160: Phénoménes de transport avec changement de phase dans les millieux porux ou cllödaux, CNRS editor, pp. 61–72, April 18–20 (1966)

  • Wang, K., Jansen, D.C., Shah, S.P., Karr, A.F.: Permeability study of cracked concrete. Cem. Concr. Res. 27(3), 381–393 (1997)

    Article  Google Scholar 

  • Wu, Z., Wong, H.S., Buenfeld, N.R.: Influence of drying-induced microcracking and related size effects on mass transport properties of concrete. Cem. Concr. Res. 68, 35–48 (2015)

    Article  Google Scholar 

  • Yang, Z., Weiss, W.J., Olek, J.: Water transport in concrete damaged by tensile loading and freeze–thaw cycling. J. Mater. Civ. Eng. 18(3), 424–434 (2006)

    Article  Google Scholar 

  • Yi, S.T., Hyun, T.Y., Kim, J.K.: The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete. Constr. Build. Mater. 25(5), 2576–2583 (2011)

    Article  Google Scholar 

  • Zeng, Q., Zhang, D., Li, K.: Kinetics and equilibrium isotherms of water vapor adsorption/desorption in cement-based porous materials. Transp. Porous Med. 109(2), 469–493 (2015)

    Article  Google Scholar 

  • Zhou, C., Li, K.: Transport properties of concrete altered by crack-induced damage. J. Mater. Civ. Eng. 27(2), A4014001 (2013)

    Article  Google Scholar 

  • Zhou, C., Li, K., Han, J.: Characterizing the effect of compressive damage on transport properties of cracked concretes. Mater. Struct. 45(3), 381–392 (2012a)

    Article  Google Scholar 

  • Zhou, C., Li, K., Pang, X.: Geometry of crack network and its impact on transport properties of concrete. Cem. Concr. Res. 42(9), 1261–1272 (2012b)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by National Key R&D Program of China (No. 2017YFB0309904), NSFC Project (Grant No. 51378295) and Jiangxi NSF Project (No. 20171BAB216043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefei Li.

Appendix: Moisture Transport Model

Appendix: Moisture Transport Model

The multi-phase transport model was developed by Baroghel-Bouny et al. (1999a) to describe the moisture transport in cement-based porous materials under isothermal condition. The porous medium was idealized as the superposition of three continuous phases: the solid/rigid skeleton, the liquid phase (l) and the gas phase (g) in pores. The gas phase includes the dry air (a) and the water vapor (v), and assumed to be an ideal mixture. The volumetric mass \(m_{j=l,v,a}\) can be expressed as a function of the pore liquid saturation s and the mass density \(\rho _{j=l,v,a}\):

$$\begin{aligned} m_{\mathrm{l}}=\phi \rho _{\mathrm{l}} s,\quad m_{\mathrm{v}}=\phi \rho _{\mathrm{v}} (1-s),\quad m_{\mathrm{a}}=\phi \rho _{\mathrm{a}}(1-s) \end{aligned}$$
(10)

where \(\phi _{\mathrm{l}}=\phi s\) and \(\phi _{\mathrm{g}}=\phi (1-s)\) represent the porosities occupied by the liquid and the gas phases respectively. The mass conservations for moisture (liquid water+vapor) and dry air write,

$$\begin{aligned} \begin{aligned} \dfrac{\partial m_{\mathrm{l}}}{\partial t}+\dfrac{\partial m_{\mathrm{v}}}{\partial t}&=-\text {div}(w_{\mathrm{l}})-\text {div}(w_{\mathrm{v}}) \\ \dfrac{\partial m_{\mathrm{a}}}{\partial t}&=-\text {div}(w_{\mathrm{a}}) \end{aligned} \end{aligned}$$
(11)

where \(w_i\) is the mass flow rate of phase i. The flow rate of liquid phase \(w_{\mathrm{l}}\) can be expressed through Darcy’s law and the flow rate of gas phases considers contribution from both pressure-induced flow, via Darcy’s law, and diffusion flow, via Fick’s law. These flow rates writes (Li et al. 2016),

$$\begin{aligned} \begin{aligned} w_{\mathrm{l}}&=-\,\rho _{\mathrm{l}} \frac{K_{\mathrm{int}}}{\eta _{\mathrm{l}}}K_{\mathrm{rl}}\nabla p_{\mathrm{l}} \\ w_{\mathrm{a,v}}&=-\,\rho _{\mathrm{a,v}} \frac{K_{\mathrm{int}}}{\eta _{\mathrm{g}}}K_{\mathrm{rg}}\nabla p_{\mathrm{g}} - f(\phi , s)D_{\mathrm{va}}\left[ \frac{E_{\mathrm{a}}E_{\mathrm{v}}(M_{\mathrm{v,a}}-M_{\mathrm{a,v}})}{RT}\nabla p_{\mathrm{g}} + \rho _{\mathrm{g}} \nabla E_{\mathrm{a,v}}\right] \end{aligned} \end{aligned}$$
(12)

Here \(K_{\mathrm{int}}\) is the intrinsic permeability and \(K_{\mathrm{rg,rl}}\) are the relative gas and liquid permeability, \(\eta _{\mathrm{g,l}}\) are the dynamic viscosity for gas and liquid, \(M_{\mathrm{v,a}}\) are the molar mass for vapor and dry air, \(p_{\mathrm{g,l}}\) are the gas and liquid pressures and \(E_{\mathrm{v,a}}\) the mass fraction of vapor and dry air in the gas mixture. The vapor and dry air are assumed to be ideal gas, observing

Table 6 Main parameters and functions used in the moisture transport model
$$\begin{aligned} p_jM_j=RT\rho _j,\quad j=v,a \end{aligned}$$
(13)

and the mass fraction \(E_{\mathrm{v,a}}\) and gas pressure \(p_{\mathrm{g}}\) observe,

$$\begin{aligned} E_{\mathrm{v,a}}=\frac{\rho _{\mathrm{v,a}}}{\rho _{\mathrm{v}} + \rho _{\mathrm{a}}} \quad \text {and} \quad p_{\mathrm{g}}=p_{\mathrm{v}} + p_{\mathrm{a}} \end{aligned}$$
(14)

The local thermodynamic equilibrium between the liquid water and vapor phase writes,

$$\begin{aligned} \dfrac{\hbox {d}p_{\mathrm{v}}}{\rho _{\mathrm{v}}}-\dfrac{\hbox {d}p_{\mathrm{l}}}{\rho _{\mathrm{l}}}=0 \end{aligned}$$
(15)

Last, the liquid and gas pressures at the liquid–gas interface keep mechanical balance with the pore capillary pressure \(p_{\mathrm{c}}\),

$$\begin{aligned} p_{\mathrm{g}}-p_{\mathrm{l}}=p_{\mathrm{c}} \end{aligned}$$
(16)

and the capillary pressure \(p_{\mathrm{c}}\) can be expressed in terms of pore saturation through the moisture characteristic curve, \(p_{\mathrm{c}}=p_{\mathrm{c}}(s)\), cf. Eq. (6). Actually, the multi-phase moisture transport model is described completely through Eqs. (11)–(16), with pore saturation s and pressures of gas and liquid phases \(p_{\mathrm{l,g,a,v}}\) as basic variables.

To use this model, some physical properties should be implemented, including the gas diffusivity \(D_{\mathrm{va}}\), the gas resistance function \(f(\phi , s)\) and the relative gas/liquid permeability \(K_{\mathrm{rg,rl}}\). The detailed expressions for these properties are omitted here, and the sources of these expressions are given in Table 6. Some main parameters are also given in the same table.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, K. Experimental Investigation on Transport Properties of Cement-Based Materials Incorporating 2D Crack Networks. Transp Porous Med 122, 647–671 (2018). https://doi.org/10.1007/s11242-018-1019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1019-0

Keywords

Navigation