Transport in Porous Media

, Volume 125, Issue 1, pp 41–58 | Cite as

Effect of 2D Image Resolution on 3D Stochastic Reconstruction and Developing Petrophysical Trend

  • Hossein Izadi
  • Majid BaniassadiEmail author
  • Fateme Hormozzade
  • Fayyaz Nosouhi Dehnavi
  • Ali Hasanabadi
  • Hossein Memarian
  • Hamid Soltanian-Zadeh


Multi-resolution digital rock physics (DRP) makes it possible to up-scale petrophysical properties from micron size to core sample size using two-dimensional (2D) thin section images. Resolution of 3D images and sample size are challenging problems in DRP where high-resolution images are acquired from small samples using inefficient and expensive micro-CT facilities. Three-dimensional stochastic reconstruction is an alternative approach to overcome these challenges. In this paper, we use multi-resolution images and investigate effect of 2D image resolution on 3D stochastic reconstruction and development of petrophysical trends for our two sandstone and carbonate original representative volume elements (RVEs). The proposed method includes three steps. In the first step, the spatial resolution of our original RVEs is decreased synthetically. In the second step, stochastic RVEs are realized for each resolution using two perpendicular images, correlation functions, and phase recovery algorithm. In the reconstruction method, a full set of two-point correlation functions (TPCFs) is extracted from two perpendicular 2D images. Then TPCF vectors are decomposed and averaged to realize 3D stochastic RVEs. In the third step, petrophysical properties like relative and absolute permeability as well as porosity and formation factor are computed. The output is used to develop trends for petrophysical properties in different resolutions. Experimental results illustrate that the proposed method can be used to predict petrophysical properties and reconstruct 3D RVEs for resolutions unavailable in the acquired 2D or 3D data.


Multi-resolution digital rock physics Petrophysical trend 3D reconstruction Image resolution Phase recovery 



This work was supported in part by the Iran National Science Foundation (INSF), Tehran, Iran. The authors also thank the Petroleum Engineering & Rock Mechanics (PERM) Group from the Department of Earth Science and Engineering, Imperial College London, London, England, for providing the sandstone and carbonate images.


  1. Al-Ansi, N., Gharbi, O., Raeini, A.Q., Yang, J., Iglauer, S. Blunt, M.J.: Influence of micro-computed tomography image resolution on the predictions of petrophysical properties. In: IPTC 2013: International Petroleum Technology Conference (2013)Google Scholar
  2. Alyafei, N., Raeini, A.Q., Paluszny, A., Blunt, M.J.: A sensitivity study of the effect of image resolution on predicted petrophysical properties. Transp. Porous Media 110(1), 157–169 (2015)CrossRefGoogle Scholar
  3. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M.: Digital rock physics benchmarks–part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013a)CrossRefGoogle Scholar
  4. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M.: Digital rock physics benchmarks–part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013b)CrossRefGoogle Scholar
  5. Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I., Oren, P.E.: Pore scale characterization of carbonates using X-ray microtomography. Spe J. 10(04), 475–484 (2005)CrossRefGoogle Scholar
  6. Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5), 1396–1405 (2002)CrossRefGoogle Scholar
  7. Bakke, S., Øren, P.E.: 3-D pore-scale modeling of sandstones and flow simulations in the pore networks. Spe J. 2(02), 136–149 (1997)CrossRefGoogle Scholar
  8. Baniassadi, M., Ahzi, S., Garmestani, H., Ruch, D., Remond, Y.: New approximate solution for N-point correlation functions for heterogeneous materials. J. Mech. Phys. Solids 60(1), 104–119 (2012)CrossRefGoogle Scholar
  9. Baniassadi, M., Safdari, M., Garmestani, H., Ahzi, S., Geubelle, P.H., Remond, Y.: An optimum approximation of n-point correlation functions of random heterogeneous material systems. J. Chem. Phys. 140(7), 074905 (2014)CrossRefGoogle Scholar
  10. Bazaikin, Y., Gurevich, B., Iglauer, S., Khachkova, T., Kolyukhin, D., Lebedev, M., Lisitsa, V., Reshetova, G.: Effect of CT-image size and resolution on the accuracy of rock property estimates. J. Geophys. Res. Solid Earth 122, 3635–3647 (2017)CrossRefGoogle Scholar
  11. Čapek, P., Hejtmánek, V., Brabec, L., Zikánová, A., Kočiřík, M.: Stochastic reconstruction of particulate media using simulated annealing: improving pore connectivity. Transp. Porous Media 76(2), 179–198 (2009)CrossRefGoogle Scholar
  12. Comunian, A., Renard, P., Straubhaar, J.: 3D multiple-point statistics simulation using 2D training images. Comput. Geosci. 40, 49–65 (2012)CrossRefGoogle Scholar
  13. Cule, D., Torquato, S.: Generating random media from limited microstructural information via stochastic optimization. J. Appl. Phys. 86(6), 3428–3437 (1999)CrossRefGoogle Scholar
  14. Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)CrossRefGoogle Scholar
  15. Dvorkin, J., Derzhi, N., Diaz, E., Fang, Q.: Relevance of computational rock physics. Geophysics 76(5), E141–E153 (2011)CrossRefGoogle Scholar
  16. Dvorkin, J., Nur, A.: Scale of experiment and rock physics trends. Lead. Edge 28(1), 110–115 (2009)CrossRefGoogle Scholar
  17. Faisal, T.F., Awedalkarim, A., Chevalier, S., Jouini, M.S., Sassi, M.: Direct scale comparison of numerical linear elastic moduli with acoustic experiments for carbonate rock X-ray CT scanned at multi-resolutions. J. Pet. Sci. Eng. 152, 653–663 (2017)CrossRefGoogle Scholar
  18. Fullwood, D.T., Niezgoda, S.R., Kalidindi, S.R.: Cut section reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56(5), 942–948 (2008a)CrossRefGoogle Scholar
  19. Fullwood, D.T., Kalidindi, S.R., Niezgoda, S.R., Fast, A., Hampson, N.: Gradient-based cut section reconstructions from distributions using fast Fourier transforms. Mater. Sci. Eng. A 494(1), 68–72 (2008b)CrossRefGoogle Scholar
  20. Fournier, F., Borgomano, J.: Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks. Geophysics 74, 93–109 (2009)CrossRefGoogle Scholar
  21. Garboczi, E.J., Kushch, V.I.: Computing elastic moduli on 3-D X-ray computed tomography image stacks. J. Mech. Phys. Solids 76, 84–97 (2015)CrossRefGoogle Scholar
  22. Gokhale, A.M., Tewari, A., Garmestani, H.: Constraints on microstructural two-point correlation functions. Scr. Mater. 53(8), 989–993 (2005)CrossRefGoogle Scholar
  23. Gooya, R., Bruns, S., Müter, D., Moaddel, A., Harti, R.P., Stipp, S.L.S., Sørensen, H.O.: Effect of tomography resolution on the calculated microscopic properties of porous materials: comparison of sandstone and carbonate rocks. Appl. Phys. Lett. 109(10), 104102 (2016)CrossRefGoogle Scholar
  24. Hajizadeh, A., Safekordi, A., Farhadpour, F.A.: A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv. Water Resour. 34(10), 1256–1267 (2011)CrossRefGoogle Scholar
  25. Hajizadeh, A., Farhadpour, Z.: An algorithm for 3D pore space reconstruction from a 2D image using sequential simulation and gradual deformation with the probability perturbation sampler. Transp. Porous Media 94(3), 859–881 (2012)CrossRefGoogle Scholar
  26. Hasanabadi, A., Baniassadi, M., Abrinia, K., Safdari, M., Garmestani, H.: 3D microstructural reconstruction of heterogeneous materials from 2D cross sections: a modified phase-recovery algorithm. Comput. Mater. Sci. 111, 107–115 (2016)CrossRefGoogle Scholar
  27. Hilfer, R., Manwart, C.: Permeability and conductivity for reconstruction models of porous media. Phys. Rev. E 64(2), 021304 (2001)CrossRefGoogle Scholar
  28. Izadi, H., Baniassadi, M., Hasanabadi, A., Mehrgini, B., Memarian, H., Soltanian-Zadeh, H., Abrinia, K.: Application of full set of two point correlation functions from a pair of 2D cut sections for 3D porous media reconstruction. J. Pet. Sci. Eng. 149, 789–800 (2017)CrossRefGoogle Scholar
  29. Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Phys. Rev. E 77(3), 031135 (2008)CrossRefGoogle Scholar
  30. Knackstedt, M.A., Latham, S., Madadi, M., Sheppard, A., Varslot, T., Arns, C.: Digital rock physics: 3D imaging of core material and correlations to acoustic and flow properties. Lead. Edge 28(1), 28–33 (2009)CrossRefGoogle Scholar
  31. Latief, F.D.E., Fauzi, U., Irayani, Z., Dougherty, G.: The effect of X-ray micro computed tomography image resolution on flow properties of porous rocks. J. Microsc. 266(1), 69–88 (2017)CrossRefGoogle Scholar
  32. Lee, M., Keehm, Y., Song, D.: Quantitative analysis of resolution and smoothing effects of digital pore microstructures on numerical velocity estimation. Geosci. J. 21, 431–440 (2017)CrossRefGoogle Scholar
  33. Madonna, C., Almqvist, B.S., Saenger, E.H.: Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophys. J. Int. 189(3), 1475–1482 (2012)CrossRefGoogle Scholar
  34. Manwart, C., Torquato, S., Hilfer, R.: Stochastic reconstruction of sandstones. Phys. Rev. E 62(1), 893 (2000)CrossRefGoogle Scholar
  35. Müter, D., Sørensen, H.O., Jha, D., Harti, R., Dalby, K.N., Suhonen, H., Feidenhans, R., Engstrøm, F., Stipp, S.L.S.: Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk. Appl. Phys. Lett. 105(4), 043108 (2014)CrossRefGoogle Scholar
  36. Neto, I.A.L., Misságia, R.M., Ceia, M.A., Archilha, N.L., Hollis, C.: Evaluation of carbonate pore system under texture control for prediction of microporosity aspect ratio and shear wave velocity. Sediment. Geol. 323, 43–65 (2015)CrossRefGoogle Scholar
  37. Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour. Res. 43(12) (2007)Google Scholar
  38. Peng, S., Hu, Q., Dultz, S., Zhang, M.: Using X-ray computed tomography in pore structure characterization for a Berea sandstone: resolution effect. J. Hydrol. 472, 254–261 (2012)CrossRefGoogle Scholar
  39. Piasecki, R.: Cut section reconstruction using entropic descriptors. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 467, No. 2127, pp. 806–820). The Royal Society (2011)Google Scholar
  40. Quiblier, J.A.: A new three-dimensional modeling technique for studying porous media. J. Colloid Interface Sci. 98(1), 84–102 (1984)CrossRefGoogle Scholar
  41. Rao, S.S., Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  42. Rémond, Y., Ahzi, S., Baniassadi, M., Garmestani, H.: Applied RVE Reconstruction and Homogenization of Heterogeneous Materials. Wiley publishing, Hoboken (2016)CrossRefGoogle Scholar
  43. Richa.: Preservation of transport properties trend: computational rock physics approach. Doctoral Dissertation, Stanford University (2010)Google Scholar
  44. Roberts, A.P.: Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys. Rev. E 56(3), 3203 (1997)CrossRefGoogle Scholar
  45. Saenger, E.H., Enzmann, F., Keehm, Y., Steeb, H.: Digital rock physics: effect of fluid viscosity on effective elastic properties. J. Appl. Geophys. 74(4), 236–241 (2011)CrossRefGoogle Scholar
  46. Saenger, E.H., Vialle, S., Lebedec, M., Uribe, D., Osorno, M., Duda, M., Steeb, H.: Digital carbonate rock physics. Solid Earth 7, 1185–1197 (2016)CrossRefGoogle Scholar
  47. Sahimi, M.: Heterogeneous Materials I: Linear Transport and Optical Properties, vol. 22. Springer, Berlin (2003)Google Scholar
  48. Sahimi, M.: Heterogeneous Materials: Nonlinear and Breakdown Properties and Atomistic Modeling, vol. 2. Springer, Berlin (2003)Google Scholar
  49. Saif, T., Lin, Q., Butcher, A.R., Bijeljic, B., Blunt, M.J.: Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS mineralogy and FIB-SEM. Appl. Energy 202, 628–647 (2017)CrossRefGoogle Scholar
  50. Saucier, A., Richer, J., Muller, J.: Assessing the scope of the multifractal approach to textural characterization with statistical reconstructions of images. Physica A Stat. Mech. Its Appl. 311(1), 231–259 (2002)CrossRefGoogle Scholar
  51. Saxena, N., Mavko, G.: Estimating elastic moduli of rocks from thin sections: digital rock study of 3D properties from 2D images. Comput. Geosci. 88, 9–21 (2016)CrossRefGoogle Scholar
  52. Soong, T.T.: Fundamentals of Probability and Statistics for Engineers. Wiley, Hoboken (2004)Google Scholar
  53. Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H.A.: The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Transp. Porous Media 113(1), 227–243 (2016)CrossRefGoogle Scholar
  54. Staraselski, Y., Brahme, A., Mishra, R.K., Inal, K.: Reconstruction of the 3D representative volume element from the generalized two-point correlation function. Model. Simul. Mater. Sci. Eng. 23(1), 015007 (2015)CrossRefGoogle Scholar
  55. Tahmasebi, P., Javadpour, F., Sahimi, M., Piri, M.: Multiscale study for stochastic characterization of shale samples. Adv. Water Resour. 89, 91–103 (2016)CrossRefGoogle Scholar
  56. Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. 5, 5 (2015a)CrossRefGoogle Scholar
  57. Tahmasebi, P., Javadpour, F., Sahimi, M.: Three-dimensional stochastic characterization of shale SEM images. Transp. in Porous Media 110(3), 521–531 (2015b)CrossRefGoogle Scholar
  58. Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment. Water Resour. Res. 52, 2074–2098 (2016a)CrossRefGoogle Scholar
  59. Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 2. Iterative simulation and multiple distance function. Water Resour. Res. 52, 2099–2122 (2016b)CrossRefGoogle Scholar
  60. Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110(7), 078002 (2013)CrossRefGoogle Scholar
  61. Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16(3), 779–797 (2012)CrossRefGoogle Scholar
  62. Talukdar, M.S., Torsaeter, O., Ioannidis, M.A., Howard, J.J.: Stochastic reconstruction of chalk from 2D images. Transp. Porous Media 48(1), 101–123 (2002)CrossRefGoogle Scholar
  63. Thovert, J.F., Adler, P.M.: Grain reconstruction of porous media: application to a Bentheim sandstone. Phys. Rev. E 83(5), 056116 (2011)CrossRefGoogle Scholar
  64. Torquato, S.: Random Heterogeneous Materials: Cut Section and Macroscopic Properties. Springer, Berlin (2002)CrossRefGoogle Scholar
  65. Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40(7) (2004)Google Scholar
  66. Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57(1), 495 (1998a)CrossRefGoogle Scholar
  67. Yeong, C.L.Y., Torquato, S.: Reconstructing random media II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58(1), 224 (1998b)CrossRefGoogle Scholar
  68. Yin, P., Zhao, G.F.: Stochastic reconstruction of Gosford sandstone from surface image. Int. J. Rock Mech. Min. Sci. 70, 82–89 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Hossein Izadi
    • 1
  • Majid Baniassadi
    • 2
    Email author
  • Fateme Hormozzade
    • 1
  • Fayyaz Nosouhi Dehnavi
    • 2
  • Ali Hasanabadi
    • 3
  • Hossein Memarian
    • 1
  • Hamid Soltanian-Zadeh
    • 4
    • 5
  1. 1.Department of Petroleum Exploration Engineering, School of Mining Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  3. 3.Department of Mechanical EngineeringUniversity of BirjandBirjandIran
  4. 4.Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
  5. 5.Medical Image Analysis Laboratory, Departments of Radiology and Research AdministrationHenry Ford Health SystemDetroitUSA

Personalised recommendations