Skip to main content
Log in

A Novel Relative Permeability Model Based on Mixture Theory Approach Accounting for Solid–Fluid and Fluid–Fluid Interactions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A novel model is presented for estimating steady-state co- and counter-current relative permeabilities analytically derived from macroscopic momentum equations originating from mixture theory accounting for fluid–fluid (momentum transfer) and solid–fluid interactions (friction). The full model is developed in two stages: first as a general model based on a two-fluid Stokes formulation and second with further specification of solid–fluid and fluid–fluid interaction terms referred to as \(R_{{i}}\) (i =  water, oil) and R, respectively, for developing analytical expressions for generalized relative permeability functions. The analytical expressions give a direct link between experimental observable quantities (end point and shape of the relative permeability curves) versus water saturation and model input variables (fluid viscosities, solid–fluid/fluid–fluid interactions strength and water and oil saturation exponents). The general two-phase model is obeying Onsager’s reciprocal law stating that the cross-mobility terms \(\lambda _\mathrm{wo}\) and \(\lambda _\mathrm{ow}\) are equal (requires the fluid–fluid interaction term R to be symmetrical with respect to momentum transfer). The fully developed model is further tested by comparing its predictions with experimental data for co- and counter-current relative permeabilities. Experimental data indicate that counter-current relative permeabilities are significantly lower than corresponding co-current curves which is captured well by the proposed model. Fluid–fluid interaction will impact the shape of the relative permeabilities. In particular, the model shows that an inflection point can occur on the relative permeability curve when the fluid–fluid interaction coefficient \(I>0\) which is not captured by standard Corey formulation. Further, the model predicts that fluid–fluid interaction can affect the relative permeability end points. The model is also accounting for the observed experimental behavior that the water-to-oil relative permeability ratio \(\hat{{k}}_{\mathrm{rw}} /\hat{{\mathrm{k}}}_{\mathrm{ro}} \) is decreasing for increasing oil-to-water viscosity ratio. Hence, the fully developed model looks like a promising tool for analyzing, understanding and interpretation of relative permeability data in terms of the physical processes involved through the solid–fluid interaction terms \(R_{{i}}\) and the fluid–fluid interaction term R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area

\(F_{\mathrm{ow}}\) :

Drag force the water phase exerts on the oil phase

\(I_{{i}}\) :

Solid–oil or water interaction friction coefficient

I :

Fluid–fluid interaction drag coefficient

J :

Identity tensor

K :

Absolute or intrinsic permeability

\(K_{\mathrm{eff}}\) :

Effective permeability (= \(k\cdot k_{\mathrm{r}})\)

\(k_{\mathrm{r}}\) :

Relative permeability

\(\hat{{k}}_{\mathrm{rw}} \) :

Generalized relative permeability of water (= \(k_{\mathrm{rww}} + k_{\mathrm{rwo}})\)

\(\hat{{k}}_{\mathrm{ro}} \) :

Generalized relative permeability of oil (= \(k_{\mathrm{row}}\) + \(k_{\mathrm{roo}})\)

\(\hat{{k}}_{\mathrm{rw}\_\mathrm{Coc}} \) :

Generalized relative permeability of water related to co-current flow

\(\hat{{k}}_{\mathrm{rw}\_\mathrm{Cou}} \) :

Generalized relative permeability of water related to counter-current flow

\(M_{\mathrm{im}}\) :

Drag between fluid i and matrix/solid

\(m_{{i}}\) :

Interaction force

\(n_{\mathrm{o}}\) :

Corey exponent to oil

\(n_{\mathrm{w}}\) :

Corey exponent to water

p :

Pressure

\(P_{\mathrm{C}}\) :

Capillary pressure

\((p_{w})_{x}=\partial p_{\mathrm{w}}/\partial x\) :

Water pressure gradient in x-direction

\((p_{\mathrm{o}})_{{x}}=\partial p_{\mathrm{o}}/\partial x\) :

Oil pressure gradient in x-direction

R :

Fluid–fluid interaction term (drag)

\(R_{{i}}\) :

Fluid–solid interaction term for fluid phase i (friction)

s :

Saturation

(\(s_{\mathrm{w}})_{{t}}=\partial s_{\mathrm{w}}/\partial t\) :

Derivative of water saturation with respect to time

\(S_{\mathrm{w}}\) :

Normalized water saturation (to the range where the fluids are mobile)

u :

Interstitial velocity (average)

\(\hat{{u}}_i (x,y,z)\) :

Interstitial velocity

U :

Darcy flux

x :

Coordinate in x-direction parallel to flow direction

y :

Coordinate in y-direction perpendicular to flow direction

\(\alpha \) :

Water–solid interaction saturation exponent

\(\beta \) :

Oil–solid interaction saturation exponent

\(\sigma \) :

Cauchy stress tensor

\(\lambda \) :

Fluid mobility

\(\hat{{\lambda }}_\mathrm{w} \) :

Generalized mobility of water phase (\(= \lambda _{\mathrm{ww}}+\lambda _{\mathrm{wo}})\)

\(\hat{{\lambda }}_\mathrm{o} \) :

Generalized mobility of oil phase (\(= \lambda _{\mathrm{ow}}+\lambda _{\mathrm{oo}})\)

\(\hat{{\lambda }}_{T} \) :

Generalized total mobility (= \(\hat{{\lambda }}_\mathrm{w} +\hat{{\lambda }}_\mathrm{o} )\)

\(\mu \) :

Fluid viscosity

\(\tau _{{i}}\) :

Viscous stress tensor

\(\phi \) :

Porosity

i, j :

Water or oil phase

m :

Matrix or solid

o:

Oil

r:

Relative or residual

t :

Derivative with respect to time

T :

Total

x :

Derivative with respect to x-coordinate

w:

Water

References

  • Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12, 737–754 (2002)

    Article  Google Scholar 

  • Anderson, W.G.: Wettability Literature Survey - Part 1: Rock/oil/Brine Interactions and the Effects of Core Handling on Wettability. J. Pet. Technol 38, 1125–1144 (1986)

  • Anderson, W.G.: Wettability Literature Survey - Part 4: The Effects of Wettability on Capillary Pressure. J. Pet. Technol. 38, 1283–1300 (1987a)

  • Anderson, W.G.: Wettability Literature Survey - Part 5: The Effects of Wettability on Relative Permeability. J. Pet. Technol 39, 1453–1468 (1987b)

  • Auriault, J.-L.: Nonsaturated deformable porous media: quasistatics. Transp. Porous Media 2, 45–64 (1987)

    Article  Google Scholar 

  • Avraam, D.G., Payatakes, A.C.: Generalized relative permeability coefficients during steady-state two-phase flow in porous media, and correlation with the flow mechanisms. Transp. Porous Media 20, 135–168 (1995)

    Article  Google Scholar 

  • Ayodele, O.R.: Theoretical analysis of viscous coupling in two-phase flow through porous media. Transp. Porous Media 64, 171–184 (2006)

    Article  Google Scholar 

  • Ayodele, O.R., Bentsen, R.G., Cunha, L.B.: Experimental and numerical quantification and verification of interfacial coupling in two-phase porous media flow. In: Petroleum Society’s 5th Canadian International Petroleum Conference Paper 2004-015 (2004)

  • Babchin, A., Yuan, J., Nasr, T.: Generalized phase mobilities in gravity drainage processes. In: Paper 98-09 Presented at the 49\(^{th}\) Annual Technical Meeting of the Petroleum Society in Calgary, Alberta, Canada, June 8–10 (1998)

  • Bentsen, R.G.: An investigation into whether the nondiagonal mobility coefficients which arise in coupled two phase flow are equal. Transp. Porous Media 14, 23–32 (1994)

    Article  Google Scholar 

  • Bentsen, R.G.: Influence of hydrodynamic forces and interfacial momentum transfer on the flow of two immiscible phases. J. Pet. Sci. Eng. 19, 177–190 (1998a)

    Article  Google Scholar 

  • Bentsen, R.G.: Effect of momentum transfer between fluid phases on effective mobility. J. Pet. Sci. Eng. 21, 27–42 (1998b)

    Article  Google Scholar 

  • Bentsen, R.G.: The physical origin of interfacial coupling in two-phase flow through porous media. Transp. Porous Media 44, 109–122 (2001)

    Article  Google Scholar 

  • Bentsen, R.G., Manai, A.A.: Measurement of concurrent and countercurrent relative permeability curves using the steady-state method. AOSTRA J. Res. 7, 160–181 (1992)

    Google Scholar 

  • Bentsen, R.G., Manai, A.A.: On the use of conventional cocurrent and countercurrent effective permeabilities to estimate the four generalized permeability coefficients which arise in coupled, two-phase flow. Transp. Porous Media 11, 243–262 (1993)

    Article  Google Scholar 

  • Berg, S., Cense, A.W., Hofman, J.P., Smits, R.M.M.: Two-phase flow in porous media with slip boundary condition. Transp. Porous Media 74, 275–292 (2008)

    Article  Google Scholar 

  • Blunt, M.J.: Multiphase Flow in Permeable Media A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  • Bourbiaux, B.J., Kalaydjian, F.J.: Experimental study of cocurrent and countercurrent flows in natural porous media. SPE Reserv. Eng. 5, 361–368 (1990)

    Article  Google Scholar 

  • Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics. Academic, New York (1976)

    Google Scholar 

  • Bowen, R.M.: Incompressible porous media model by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  Google Scholar 

  • Bradford, S.A., Leij, F.J.: Estimating interfacial areas for multi-fluid soil systems. J. Contam. Hydrol. 27, 83–105 (1997)

    Article  Google Scholar 

  • Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. In: Hydrology Papers, Colorado State University, Fort Collins, Colorado, No. 3 (1964)

  • Bryant, S.L., Johnson, A.S.: Theoretical Evaluation of the Interfacial Area between Two Fluids in a Model Soil. In: Lipnick, R.L., Mason, R.P., Phillips, M.L., Pittman Jr., C.U. (eds.) Chemicals in the Environment Fate, Impacts, and Remediation, vol. 806. American Chemical Society, Washington (2002)

    Chapter  Google Scholar 

  • Byrne, H.M., Owen, M.R.: A new interpretation of the Keller-Segel model based on multiphase modeling. J. Math. Biol. 49, 604–626 (2004)

    Article  Google Scholar 

  • Byrne, H.M., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)

    Article  Google Scholar 

  • de la Cruz, V., Spanos, T.J.T.: Mobilization of oil ganglia. AIChE J. 29(5), 854–858 (1983)

    Article  Google Scholar 

  • Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L., Tompson, A.F.B.: Interfacial area measurements for unsaturated flow through a porous medium. Water Resour. Res. 40, W12413 (2004)

    Article  Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • de Gennes, P.G.: Theory of slow biphasic flows in porous media. PCH Physicochem. Hydrodyn. 4(2), 175–185 (1983)

    Google Scholar 

  • Dullien, F.A.L., Dong, M.: Experimental determination of the flow transport coefficients in the coupled equations of two-phase flow in porous media. Transp. Porous Media 25, 97–120 (1996)

    Article  Google Scholar 

  • Dullien, F.A.L.: Physical interpretation of hydrodynamic coupling in a steady two-phase flow. In: Proceedings of American Geophysical Union, 13th Annual Hydrology Days, pp. 363-377 (1993)

  • Eastwood, J.E., Spanos, T.J.T.: Steady-state countercurrent flow in one dimension. Transp. Porous Media 6, 173–182 (1991)

    Article  Google Scholar 

  • Ehrlich, R.: Viscous coupling in two-phase flow in porous media and its effect on relative permeabilities. Transp. Porous Media 11, 201–218 (1992)

    Article  Google Scholar 

  • Flekkøy, E.G., Pride, S.R.: Reciprocity and cross coupling of two-phase flow in porous media from Onsager theory. Phys. Rev. E 60(4), 4130–4137 (1999)

    Article  Google Scholar 

  • Goode, P.A., Ramakrishnan, T.S.: Momentum Transfer Across Fluid-Fluid Interfaces in Porous Media: a Network Model. AIChE J. 39(7), 1124–1134 (1993)

  • Guzmán, R.E., Fayers, F.J.: Mathematical properties of three-phase flow equations. SPE J. 2, 291–300 (1997)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Toward an improved description of the physics of two-phase flow. Adv. Water Resour. 16, 53–67 (1993)

    Article  Google Scholar 

  • Helland, J.O., Skjæveland, S.M.: Relationship between capillary pressure, saturation, and interfacial area from a model of mixed-wet triangular tubes. Water Resour. Res. 43, W12S10 (2007)

    Article  Google Scholar 

  • Honarpour, M.M., Huang, D.D., Al-Hussainy, R.: Simultaneous measurements of relative permeability, capillary pressure, and electric resistivity with microwave system for saturation monitoring. SPE J 1, 283–293 (1996)

    Article  Google Scholar 

  • Honarpour, M., Koederitz, L., Harvey, A.H.: Relative Permeability of Petroleum Reservoirs. C.R.C. Press, Inc., Boca Raton, FL (1986)

  • Javaheri, M., Jessen, K.: CO2 mobility and transition between co-current and counter-current flows. SPE 163596 (2013)

  • Jerauld, G.R.: General three-phase relative permeability model for Prudhoe Bay. SPE Reserv. Eng 12, 255–263 (1997)

    Article  Google Scholar 

  • Jerauld, G.R., Salter, S.J.: The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transp. Porous Media 5, 103–151 (1990)

    Article  Google Scholar 

  • Kalaydjian, F.: A macroscopic description of multiphase flow in porous media involving spacetime evolution of fluid/fluid interface. Transp. Porous Media 2, 537–552 (1987)

    Article  Google Scholar 

  • Kalaydjian, F.: Origin and quantification of coupling between relative permeabilities for two-phase flows in porous media. Transp. Porous Media 5, 215–229 (1990)

    Article  Google Scholar 

  • Langaas, K.: Viscous coupling and two-phase flow in porous media. In: Paper Presented at the 6th European Conference on the Mathematics of Oil Recovery, Peebles, Scotland, Sept. 8–11 (1998)

  • Langaas, K., Papatzacos, P.: Numerical investigations of the steady state relative permeability of a simplified porous medium. Transp. Porous Media 45, 241–266 (2001)

    Article  Google Scholar 

  • Levine, J.S.: Displacement experiments in a consolidated porous system. Pet. Trans. AIME 201, 57–66 (1954)

    Google Scholar 

  • Li, H., Pan, C., Miller, C.T.: Viscous coupling effects for two-phase flow in porous media. Dev Water Sci. 55(Part 1), 247–256 (2004)

    Article  Google Scholar 

  • Li, H., Pan, C., Miller, C.T.: Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys. Rev. E 72, 026705 (2005)

    Article  Google Scholar 

  • Liang, Q., Lohrenz, J.: Dynamic method of measuring coupling coefficients of transport equations of two-phase flow in porous media. Transp. Porous Media 15, 71–79 (1994)

    Article  Google Scholar 

  • Mason, G., Morrow, N.R.: Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 110, 268–293 (2013)

    Article  Google Scholar 

  • Mason, G., Fischer, H., Morrow, N.R., Ruth, D.W.: Correlation for the effect of fluid viscosities in counter-current spontaneous imbibition. J. Pet. Sci. Eng. 72, 195–205 (2010)

    Article  Google Scholar 

  • McDougall, S.R., Sorbie, K.S.: The impact of wettability on waterflooding: pore-scale simulation. SPE Reserv. Eng. 10, 208–213 (1995)

    Article  Google Scholar 

  • Morrow, N.R., Mason, G.: Recovery of oil by spontaneous imbibition. Curr. Opin Colloid Interface Sci. 6, 321–337 (2001)

    Article  Google Scholar 

  • Muccino, J.C., Gray, W.G., Ferrand, L.A.: Toward an improved understanding of multiphase flow in porous media. Rev. Geophys. 36(3), 401–422 (1998)

    Article  Google Scholar 

  • Mungan, N.: Relative permeability measurements using reservoir fluids. SPE J 12, 398–402 (1972)

    Article  Google Scholar 

  • Muskat, M., Wyckoff, R.D., Botset, H.G., Meres, M.M.: Flow of gas-liquid mixtures through sands. SPE Trans. AIME 123(1), 69–96 (1937)

    Article  Google Scholar 

  • Nasr, T.N., Law, D.H.-S., Golbeck, H., Korpany, G.: Counter-current aspects of the SAGD process. J. Can. Pet. Technol. 39(1), 41–47 (2000)

    Article  Google Scholar 

  • Nejad, K.S., Berg, E.A., Ringen, J.K.: Effect of oil viscosity on water/oil relative permeability. In: Paper SCA2011-12 (2011)

  • Niessner, J., Berg, S., Hassanizadeh, S.M.: Comparison of two-phase darcy’s law with a thermodynamic consistent approach. Transp. Porous Media 88, 133–148 (2011)

    Article  Google Scholar 

  • Odeh, A.S.: Effect of viscosity ratio on relative permeability. J. Pet. Technol. 216, 346–353 (1959)

    Google Scholar 

  • Olson, J.F., Rothman, D.H.: Two-fluid flow in sedimentary rock: simulation, transport and complexity. J. Fluid Mech. 341, 343–370 (1997)

    Article  Google Scholar 

  • Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  • Osoba, J.S., Richardson, J.G., Kerver, J.K., Hafford, J.A., Balir, P.M.: Laboratory measurements of relative permeability. Pet. Trans. AIME 192, 47–56 (1951)

    Google Scholar 

  • Preziosi, L., Farina, A.: On Darcy’s law for growing porous media. Int. J. Non-linear Mech. 37, 485–491 (2002)

    Article  Google Scholar 

  • Prosperetti, A., Tryggvason, G.: Computational Methods for Multiphase Flow. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  • Raats, P.A.C., Klute, A.: Transport in soils: the balance of momentum. Soil Sci. Soc. Am. Proc. 32, 452–456 (1968)

    Article  Google Scholar 

  • Ragajopal, K.R., Tao, L.: Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35. World Science, New York (1995)

    Google Scholar 

  • Rakotomalala, N., Salin, D., Yortsos, Y.C.: Viscous coupling in a model porous medium geometry: effect of fluid contact area. Appl. Sci. Res. 55, 155–169 (1995)

    Article  Google Scholar 

  • Ramakrishnan, T.S., Goode, P.A.: Measurement of off-diagonal transport coefficients in two-phase flow in porous media. J. Colloid Interface Sci. 449, 392–398 (2015)

    Article  Google Scholar 

  • Reeves, P.C., Celia, M.A.: A functional relationship between capillary pressure, saturation, and interfacial area as revealed by pore-scale network model. Water Resour. Res. 32(8), 2345–2358 (1996)

    Article  Google Scholar 

  • Richardson, J.G., Kerver, J.K.: Laboratory determination of relative permeability. Trans. AIME 195, 187–196 (1952)

    Google Scholar 

  • Rose, W.: Transport through interstitial paths of porous solids. METU J. Pure Appl. Sci. 2, 117–132 (1969)

    Google Scholar 

  • Rose, W.: Some problems connected with the use of classical description of fluid/fluid displacement processes. In: IAHR, (ed.) Fundamentals of Transport Phenomena in Porous Media. Elsevier, New York (1972)

  • Rose, W.: Measuring transport coefficients necessary for the description of coupled two-phase flow in immiscible fluids in porous media. Transp. Porous Media 3, 163–171 (1988)

    Article  Google Scholar 

  • Spanos, T.J.T., de la Cruz, V., Hube, J.: An analysis of the theoretical foundations of relative permeability curves. AOSTRA J. Res. 4(3), 181–192 (1988)

    Google Scholar 

  • Spanos, T.J.T., de la Cruz, V., Hube, J., Sharma, R.C.: An analysis of Buckley-Leverett theory. J. Can. Pet. Technol. 25(1), 70–76 (1986)

  • Wang, J., Dong, M., Asghari, K.: Effect of oil viscosity on heavy-oil/water relative permeability curves. In: SPE 99763 Presented at the SPE/DOE Symposium on Improved Oil Recovery Held in Tulsa, Oklahoma, U.S.A. (2006)

  • Wasan, D.T., Mohan, V.: Interfacial rheological properties of fluid interfaces containing surfactants. In: Shah, D.O., Schechter, R.S. (eds.) Improved Oil Recovery by Surfactant and Polymer Flooding, pp. 161–204. Academic Press, New York (1977)

    Chapter  Google Scholar 

  • Whitaker, S.: Flow in porous media II: the governing equations for immiscible, two-phase flow. Transp. Porous Media 1, 105–125 (1986)

    Article  Google Scholar 

  • Yuan, J.-Y., Coombe, D., Law, D.H.-S., Babchin, A.: Determination of the relative permeability matrix coefficients. In: Petroleum Society’s Canadian International Petroleum Conference Paper 2001-002 (2001)

  • Yuster, S.T.: Theoretical considerations of multiphase flow in idealized capillary systems. In: Paper WPC-4129 Presented at the 3rd World Petroleum Congress, 28 May-6 June, The Hague, the Netherlands (1951)

Download references

Acknowledgements

Dag Chun Standnes thanks Statoil ASA for supporting the adjunct prof. position at the University of Stavanger. Steinar Evje and PålØstebø Andersen thank the Research Council of Norway and the industry partners; ConocoPhillips Skandinavia AS, BP Norge AS, Det Norske Oljeselskap AS, Eni Norge AS, Maersk Oil Norway AS, DONG Energy A/S, Denmark, Statoil Petroleum AS, ENGIE E&P NORGE AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge AS of the National IOR Centre of Norway for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag Chun Standnes.

Appendix

Appendix

1.1 A1 Positive and negative counter-current relative permeabilities

Equation 45 shows that negative values for counter-current relative permeabilities may occur for certain combination of input parameter values. For both expressions, we note that the denominator is always positive and only the negative sign corresponds to adding negative terms in the nominator. The only way to have negative \(k_{\mathrm{rw}}\) is to have counter-current flow (“-”) and low water saturations (\(s_{\mathrm{w}}- s_{\mathrm{o}} < 0\)). If the fluid–fluid interaction is weak, \(k_{\mathrm{rw}}\) can stay positive for all saturations. In particular, it follows from Eq. 45 that a positive \(k_{\mathrm{rw}}\) for given saturations is equivalent to have

$$\begin{aligned} I<\frac{I_\mathrm{o} }{\mu _\mathrm{w} s_\mathrm{o} S_\mathrm{o}^{-\beta } \left( {s_\mathrm{o} -s_\mathrm{w} } \right) }, \end{aligned}$$
(A1)

which means that if

$$\begin{aligned} I<\frac{I_\mathrm{o} }{\mu _\mathrm{w} (1-s_{\mathrm{wr}} )(S_\mathrm{o}^*)^{-\beta }\left( {1-s_{\mathrm{or}}^ -s_{\mathrm{wr}} } \right) } \end{aligned}$$
(A2)

(where \(S_{\mathrm{o}}^*=\frac{0.5-s_{\mathrm{or}}}{1-s_{\mathrm{or}} -s_{\mathrm{wr}}}\) is the scaled saturation evaluated when the saturations are equal), \(k_{\mathrm{rw}}\) will be positive for all saturations. By similar derivation, we obtain that:

$$\begin{aligned} I<\frac{I_\mathrm{w} }{\mu _\mathrm{o} (1-s_{\mathrm{or}} )(S_\mathrm{w}^*)^{-\alpha }\left( {1-s_{\mathrm{or}} -s_{\mathrm{wr}} } \right) }, \quad S_\mathrm{w}^*=\frac{0.5-s_{\mathrm{wr}}}{1-s_{\mathrm{or}} -s_{\mathrm{wr}}}, \end{aligned}$$
(A3)

produces strictly positive counter-current \(k_{\mathrm{ro}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Standnes, D.C., Evje, S. & Andersen, P.Ø. A Novel Relative Permeability Model Based on Mixture Theory Approach Accounting for Solid–Fluid and Fluid–Fluid Interactions. Transp Porous Med 119, 707–738 (2017). https://doi.org/10.1007/s11242-017-0907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0907-z

Keywords

Navigation