Marine Geophysical Research

, Volume 39, Issue 1–2, pp 121–137 | Cite as

Multibeam sonar backscatter data processing

  • Alexandre C. G. Schimel
  • Jonathan Beaudoin
  • Iain M. Parnum
  • Tim Le Bas
  • Val Schmidt
  • Gordon Keith
  • Daniel Ierodiaconou
Original Research Paper

Abstract

Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

Keywords

Multi-beam Echosounder Echo-sounder Backscatter mosaic Angular response Backscatter Seafloor characterization 

References

  1. APL (1994) APL-UW high-frequency ocean environmental acoustic models handbook, Technical report 9407. Applied Physics Laboratory University of Washington, Seattle, WAGoogle Scholar
  2. APL (2000) High-frequency bistatic scattering model for elastic seafloors, Technical memorandum 2-00. Applied Physics Laboratory University of Washington, Seattle, WAGoogle Scholar
  3. Augustin J-M, Lurton X (2005) Image amplitude calibration and processing for seafloor mapping sonars. Oceans 2005—Europe, vol 1, pp 698–701Google Scholar
  4. Augustin J-M, Edy C, Savoye B, Le Drezen E (1994) Sonar mosaic computation from multibeam echo sounder. In: OCEANS 94, vol 2. ‘Oceans engineering for today’s technology and tomorrow’s preservation.’ Proceedings, p II/433–II/438Google Scholar
  5. Augustin J-M, Lamarche G, Lurton X, Pallentin A (2013) Sonar scope recent achievements in backscatter processing application to the reflectivity of The Brothers Area, NZ. QPS Workshop “Multibeam Backscatter State of the Technology, Tools & Techniques”, GeoHab ConferenceGoogle Scholar
  6. Beaudoin JD, Hughes Clarke JE, van den Ameele EJ, Gardner JV (2002) Geometric and radiometric correction of multibeam backscatter derived from Reson 8101 systems. Canadian Hydrographic Conference 2002 Proceedings, Toronto, ONGoogle Scholar
  7. Beaudoin JD, Hughes Clarke JE, Bartlett JE (2004) Application of surface sound speed measurements in post-processing for multi-sector multibeam echosounders. Int Hydrogr Rev 5:26–31Google Scholar
  8. Carvalho RdC, Hughes Clarke JE (2012) Proper environmental reduction for attenuation in multi-sector sonars. In: Proceedings of the Canadian hydrographic conference, Niagara Falls, Ontario, Canada. pp 1–15Google Scholar
  9. Che Hasan R, Ierodiaconou D, Laurenson L (2012) Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar Coastal Shelf Sci 97:1–9.  https://doi.org/10.1016/j.ecss.2011.10.004 CrossRefGoogle Scholar
  10. de Oliveira Junior AM, Hughes Clarke J (2007) Recovering wide angular sector multibeam backscatter to facilitate seafloor classification. U.S. Hydrographic Conference. Norfolk, VA, p 22Google Scholar
  11. De Moustier C, Kraft BJ (2013) In situ beam pattern estimation from seafloor acoustic backscatter measured with swath mapping sonars. In: Proceedings of Meetings on Acoustics ICA2013, vol 19, No. 1, p 070013Google Scholar
  12. De Falco G, Tonielli R, Di Martino G et al (2010) Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res 30:1941–1950.  https://doi.org/10.1016/j.csr.2010.09.006 CrossRefGoogle Scholar
  13. Demer DA, Berger L, Bernasconi M et al (2015) Calibration of acoustic instruments. ICES Cooperative Research Report No. 326. p 133Google Scholar
  14. EOSDIS (1986) Report of the EOS data panel, vol IIa, NASA Technical Memo 87777Google Scholar
  15. EOSDIS (2017) EOSDIS Handbook—March 2017. https://cdn.earthdata.nasa.gov/conduit/upload/6321/EOSDIS_Handbook_1.3.pdf. Accessed 15 June 2017
  16. Fonseca L, Calder B (2005) Geocoder: an efficient backscatter map constructor. U.S. Hydrographic Conference, San Diego, CAGoogle Scholar
  17. Fonseca L, Mayer L (2007) Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data. Mar Geophys Res 28:119–126CrossRefGoogle Scholar
  18. Fonseca L, Calder B, Wetzler M (2006) Experiments for multibeam backscatter adjustments on the NOAA ship fairweather. In: Oceans 2006, vol 1–4, IEEE, New York, pp 323–326Google Scholar
  19. Fonseca L, Brown C, Calder B, Mayer L, Rzhanov Y (2009) Angular range analysis of acoustic themes from Stanton Banks Ireland: a link between visual interpretation and multibeam echosounder angular signatures. Appl Acoust 70:1298–1304CrossRefGoogle Scholar
  20. Foote KG, Dezhang C, Hammar TR, Baldwin KC, Mayer LA, Hufnagle LC, Jech JM (2005) Protocols for calibrating multibeam sonar. J Acoust Soc Am 117:2013–2027.  https://doi.org/10.1121/1.1869073 CrossRefGoogle Scholar
  21. Francois RE, Garrison GR (1982) Sound absorption based on ocean measurements: part II: boric acid contribution and equation for total absorption. J Acoust Soc Am 72:1879–1890CrossRefGoogle Scholar
  22. Gavrilov AN, Duncan AJ, McCauley RD, Parnum IM, Penrose JD, Siwabessy PJW, Woods AJ, Tseng Y-T (2005) Characterization of the Seafloor in Australia’s Coastal Zone using acoustic techniques. Proceedings of the international conference ‘underwater acoustic measurements: technologies and results’, Crete, GreeceGoogle Scholar
  23. Hammerstad E (2000) EM technical note, backscattering and seabed image reflectivity. p 5Google Scholar
  24. Hammerstad E (2005) EM technical note, sound levels from Kongsberg multibeams. p 3Google Scholar
  25. Heaton JL, Rice G, Weber TC (2017) An extended surface target for high-frequency multibeam echo sounder calibration. J Acoust Soc Am 141:EL388–EL394.  https://doi.org/10.1121/1.4980006 CrossRefGoogle Scholar
  26. Hellequin L, Lurton X, Augustin J-M (1997) Postprocessing and signal corrections for multibeam echosounder images. In: OCEANS’97, vol 1. MTS/IEEE Conference Proceedings. pp 23–26Google Scholar
  27. Hill NA, Lucieer V, Barrett NS, Anderson TJ, Williams SB (2014) Filling the gaps: predicting the distribution of temperate reef biota using high resolution biological and acoustic data. Estuar Coastal Shelf Sci 147:137–147CrossRefGoogle Scholar
  28. Hiroji AD, Hughes Clarke JE (2017) Radiometric compensation strategy for multispectral backscatter data. In: U.S. Hydrographic Conference. Galveston, Texas, USAGoogle Scholar
  29. Hiroji AD, Hughes Clarke JE (2016) Multi-sector radiometric beam pattern extraction method for improved seafloor classification. In: Canadian hydrographic conference 2016. Halifax, NS, Canada, pp 1–21Google Scholar
  30. Huang Z, Siwabessy J, Nichol S, Anderson T, Brooke B (2013) Predictive mapping of seabed cover types using angular response curves of multibeam backscatter data: Testing different feature analysis approaches. Cont Shelf Res 61–62:12–22.  https://doi.org/10.1016/j.csr.2013.04.024 CrossRefGoogle Scholar
  31. Hughes Clarke J (1994) Toward remote seafloor classification Using the angular response of acoustic backscattering: a case study from multiple overlapping GLORIA data. IEEE J Ocean Eng 19:112–127CrossRefGoogle Scholar
  32. Hughes Clarke JE (2012) Optimal use of multibeam technology in the study of shelf morphodynamics. Int Assoc Sedimentol Spec Publ 44:3–28Google Scholar
  33. Hughes Clarke JE (2015) Multispectral acoustic backscatter from multibeam, improved classification potential. U.S. Hydrographic Conference. p 19Google Scholar
  34. Hughes Clarke J, Danforth BW, Valentine P (1997) Areal seabed classification using backscatter angular response at 95 kHz. High frequency acoustics in shallow water, Lerici, ItalyGoogle Scholar
  35. Hughes Clarke JE, Iwanowska KK, Parrott R et al (2008) Inter-calibrating multi-source, multi-platform backscatter data sets to assist in compiling regional sediment type maps: Bay of Fundy. In: Canadian hydrographic conference national surveyors conference 2008. Victoria, BC, Canada, p 22Google Scholar
  36. Kloser RJ, Penrose JD, Butler AJ (2010) Multi-beam backscatter measurements used to infer seabed habitats. Cont Shelf Res 30:1772–1782.  https://doi.org/10.1016/j.csr.2010.08.004 CrossRefGoogle Scholar
  37. Lamarche G, Lurton X (2017) Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars. Mar Geophys Res.  https://doi.org/10.1007/s11001-017-9315-6 Google Scholar
  38. Lamarche G, Lurton X, Verdier A-L, Augustin J-M (2011) Quantitative characterisation of seafloor substrate and bedforms using advanced processing of multibeam backscatter—application to cook strait, New Zealand. Cont Shelf Res 31:S93–S109CrossRefGoogle Scholar
  39. Lanzoni C, Weber T (2011) A method for field calibration of a multibeam echo sounder. Oceans 2011, p 7Google Scholar
  40. Le Bas TP, Huvenne VAI (2008) Acquisition and processing of backscatter data for habitat mapping—comparison of multibeam and sidescan systems. Appl Acoust 70: 1248–1257.  https://doi.org/10.1016/j.apacoust.2008.07.010 CrossRefGoogle Scholar
  41. Le Gonidec Y, Lamarche G, Wright IC (2003) Inhomogeneous substrate analysis using EM300 backscatter imagery. Mar Geophys Res 24:311–327.  https://doi.org/10.1007/s11001-004-1945-9 CrossRefGoogle Scholar
  42. Leblanc E, Foster B (2015) New algorithm for multibeam imagery processing. Marine technology reporter white papers, hydrographic edition, pp 40–44Google Scholar
  43. Lucieer V, Roche M, Degrendele K, Malik M, Dolan M, Lamarche G (2017) User expectations for multibeam echo sounders backscatter strength data-looking back into the future. Mar Geophys Res.  https://doi.org/10.1007/s11001-017-9316-5
  44. Lurton X (2010) An introduction to underwater acoustics—principles and applications, 2nd edn. Springer-Verlag, Berlin. p 680CrossRefGoogle Scholar
  45. Lurton X, Lamarche G (2015) Backscatter measurements by seafloor mapping sonars: guidelines and recommendations. http://geohab.org/wp-content/uploads/2013/02/BWSG-REPORT-MAY2015.pdf. Accessed 15 June 2017
  46. MacLennan DN, Fernandes PG, Dalen J (2002) A consistent approach to definitions and symbols in fisheries acoustics. ICES J Mar Sci 59:365–369.  https://doi.org/10.1006/jmsc.2001.1158 CrossRefGoogle Scholar
  47. Melvin GD, Cochrane NA, Li Y (2003) Extraction and comparison of acoustic backscatter from a calibrated multi- and single-beam sonar. ICES J Mar Sci 60:669–677.  https://doi.org/10.1016/S1054-3139(03)00055-9 CrossRefGoogle Scholar
  48. Parnum IM (2007) Benthic habitat mapping using multibeam sonar systems. PhD Thesis, Curtin UniversityGoogle Scholar
  49. Parnum IM, Gavrilov A (2011a) High-frequency multibeam echo-sounder measurements of seafloor backscatter in shallow water: part 1—data acquisition and processing. Underwater Technol 30:3–12CrossRefGoogle Scholar
  50. Parnum IM, Gavrilov A (2011b) High-frequency multibeam echo-sounder measurements of seafloor backscatter in shallow water: part 2—mosaic production, analysis and classification. Underwater Technol 30:13–26CrossRefGoogle Scholar
  51. Parnum IM, Gavrilov AN, Siwabessy PJW, Duncan AJ (2006). Analysis of high-frequency multibeam backscatter statistics from different seafloor habitats. Eighth European conference on underwater acoustics, 8th ECUA, Carvoeiro, Portugal. p 6Google Scholar
  52. Preston JM (2009) Automated acoustic seabed classification of multibeam images of Stanton Banks. Appl Acoust 70:1277–1287CrossRefGoogle Scholar
  53. QPS (2017) Beam Pattern Correction, pp 296–297. In: Fledermaus v7.7.x Manual. p 562Google Scholar
  54. Rice G, Greenaway SF, Weber TC, Beaudoin J (2012) Methods for collecting and using backscatter field calibration information for the reson 7000 Series Multibeams. In: Canadian hydrographic conference 2012Google Scholar
  55. Schimel ACG, Healy TR, McComb P, Immenga D (2010) Comparison of a self-processed EM3000 multibeam echosounder dataset with a QTC view habitat mapping and a sidescan sonar imagery, Tamaki Strait, New Zealand. J Coastal Res 26:714–725CrossRefGoogle Scholar
  56. Schimel ACG, Beaudoin J, Gaillot A, Keith G, Le Bas T, Parnum I, Schmidt V (2015) Chapter 6: Processing Backscatter Data: From Datagrams to Angular Response and Mosaics. In: Lurton X, Lamarche G (eds) Backscatter measurements by seafloor-mapping sonars. Guidelines and Recommendations. p 200Google Scholar
  57. Tamsett D, Hogarth P (2016) Sidescan sonar beam function and seabed backscatter functions from trace amplitude and vehicle roll data. IEEE J Ocean Eng 41:155–163.  https://doi.org/10.1109/JOE.2015.2390732 CrossRefGoogle Scholar
  58. Teledyne Reson (2015) SeaBat T50-P product description. p 22Google Scholar
  59. Urick RJ (1983) Principles of underwater sound, 3rd edn. McGraw-Hill, New York. p 444Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Water and Atmospheric Research (NIWA)HataitaiNew Zealand
  2. 2.Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology (Warrnambool Campus)WarrnamboolAustralia
  3. 3.Quality Positioning Services Canada IncFrederictonCanada
  4. 4.Centre for Marine Science and TechnologyCurtin UniversityBentleyAustralia
  5. 5.National Oceanography Center SouthamptonSouthamptonUK
  6. 6.Center for Coastal and Ocean MappingUniversity of New HampshireDurhamUSA
  7. 7.CSIRO Oceans & AtmosphereHobartAustralia

Personalised recommendations