Skip to main content
Log in

Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a new biomimetic image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in Boscain et al. (SIAM J. Imaging Sci. 7(2):669–695, 2014) and based upon a semi-discrete variation of the Citti–Petitot–Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad hoc local averaging techniques. In particular, we focus on highly corrupted images (i.e., where more than the 80% of the image is missing), for which we obtain high-quality reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. When corrupted areas are not known a priori, their determination is an important and non-trivial problem, which is an area of active investigation in computer vision. See for instance [1, 15], for the determination of craquelures.

  2. More precisely, in [9, Theorem 26] the authors prove that given a Gaussian function G and a bounded domain \(\mathcal D\subset \mathbb {R}^2\), the set of square integrable functions \(f\in L^2(\mathcal D)\) such that \(f\star G\) is a Morse function is a countable intersection of open-dense sets. See also [9, Theorem 28] for a slightly stronger result.

References

  1. Abas, F.: Analysis of craquelure patterns for content-based retrieval. PhD thesis, University of Southampton (2004)

  2. Agrachev, A., Barilari, D., Boscain, U.: Introduction to Riemannian and Sub-Riemannian Geometry (Lecture Notes). http://webusers.imj-prg.fr/~davide.barilari/notes.php

  3. Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Sub-Riemannian Geometry, volume 144 of Progress in Mathematics, pp. 1–78. Birkhäuser, Basel (1996)

  4. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of SIGGRAPH 2000, New Orleans, USA, pp. 417–424 (2000)

  5. Bohi, A., Prandi, D., Guis, V., Bouchara, F., Gauthier, J.-P.: Fourier descriptors based on the structure of the human primary visual cortex with applications to object recognition. J. Math. Imaging Vis. 57(1), 117–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boscain, U., Charlot, G., Rossi, F.: Existence of planar curves minimizing length and curvature. Proc. Steklov Inst. Math. 270, 43–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscain, U., Chertovskih, R.A., Gauthier, J.-P., Remizov, A.O.: Hypoelliptic diffusion and human vision: a semidiscrete new twist. SIAM J. Imaging Sci. 7(2), 669–695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boscain, U., Duits, R., Rossi, F., Sachkov, Yu.: Curve cuspless reconstruction via sub-Riemannian geometry. ESAIM Control Optim. Calc. Var. 20(3), 748–770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boscain, U., Duplaix, J., Gauthier, J.-P., Rossi, F.: Anthropomorphic image reconstruction via hypoelliptic diffusion. SIAM J. Control Optim. 50(3), 1–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boscain, U., Gauthier, J.-P., Prandi, D., Remizov, A.: Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems. In: 53rd IEEE Conference on Decision and Control, pp. 4278–4283 (2014)

  11. Bugeau, A., Bertalmío, M., Caselles, V., Sapiro, G.: A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19(10), 2634–2645 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Citti, G., Franceschiello, B., Sanguinetti, G., Sarti, A.: Sub-Riemannian mean curvature flow for image processing. SIAM J. Imaging Sci. 9(1), 212–237 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cornelis, B., Ružić, T., Gezels, E., Dooms, A., Pižurica, A., Platiša, L., Cornelis, J., Martens, M., De Mey, M., Daubechies, I.: Crack detection and inpainting for virtual restoration of paintings: the case of the ghent altarpiece. Signal Process. 93(3), 605–619 (2013)

    Article  Google Scholar 

  16. Duits, R., Boscain, U., Rossi, F., Sachkov, Y.: Association fields via cuspless sub-Riemannian geodesics in SE(2). J. Math. Imaging Vis. 49(2), 384–417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duits, R., Franken, E.: Left-invariant parabolic evolutions on \({\rm SE}(2)\) and contour enhancement via invertible orientation scores. Part I: linear left-invariant diffusion equations on \({\rm SE}(2)\). Q. Appl. Math. 68(2), 255–292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duits, R., Franken, E.: Left-invariant parabolic evolutions on \({\rm SE}(2)\) and contour enhancement via invertible orientation scores. Part II: nonlinear left-invariant diffusions on invertible orientation scores. Q. Appl. Math. 68(2), 293–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duits, R., van Almsick, M.A.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D euclidean motion group. Q. Appl. Math. 66, 27–67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Facciolo, G., Arias, P., Caselles, V., Sapiro, G.: Exemplar-based interpolation of sparsely sampled images. In: Cremers, D., Boykov, Yu., Blake, A., Schmidt, F.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition: 7th International Conference EMMCVPR 2009 (Bonn, Germany, August 24–27, 2009) Proceedings, pp. 331–344. Springer (2009)

  21. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd rev. edn. Springer, Berlin (2002)

  22. Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian Geometry, volume 144 of Progress in Mathematics, pp. 79–323. Birkhäuser, Basel (1996)

  23. Hladky, R.K., Pauls, S.D.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vis. 36(1), 1–27 (2010)

    Article  MathSciNet  Google Scholar 

  24. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Article  Google Scholar 

  26. Marchuk, G.I.: Methods of Numerical Mathematics. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  27. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  28. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11(2), 68–76 (2002)

    Article  MathSciNet  Google Scholar 

  29. Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: Proceedings of 5th IEEE International Confernce on Image Processing, vol. 3, pp. 259–263 (1998)

  30. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002)

  31. Peichl, L., Wässle, H.: Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J. Physiol. 291, 117–141 (1979)

    Article  Google Scholar 

  32. Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris 97(2–3), 265–309 (2003)

    Article  Google Scholar 

  33. Petitot, J.: Neurogéométrie de la vision - Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l’École Polytechnique (2008)

  34. Ponomarenko, N., Jin, L., Lukin, V., Egiazarian, K.: Self-similarity measure for assessment of image visual quality. In: Proceedings of the 13th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS’11, pp. 459–470, Berlin, Heidelberg (2011)

  35. Prandi, D., Boscain, U., Gauthier, J.-P.: Image processing in the semidiscrete group of rototranslations. In: Geometric Science of Information, volume 9389 of Lecture Notes in Computer Science, pp. 627–634. Springer (2015)

  36. Prandi, D., Gauthier, J.-P.: A semidiscrete version of the Petitot model as a plausible model for anthropomorphic image reconstruction and pattern recognition. Springer Briefs in Mathematics. Springer. arXiv:1704.03069

  37. Sanguinetti, G., Citti, G., Sarti, A.: Image completion using a diffusion driven mean curvature flow in a sub-Riemannian space. In: Proceedings of the 3rd International Conference on Computer Vision Theory and Applications (VISAPP 2008), volume 2, pp. 46–53 (2008)

  38. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Strichartz, R.S.: Corrections to: Sub-Riemannian geometry [J. Differential Geom. 24(2), 221–263 (1986); MR0862049 (88b:53055)]. J. Differ. Geom. 30(2), 595–596 (1989)

  40. Voronin, V.V., Frantc, V.A., Marchuk, V.I., Sherstobitov, A.I., Egiazarian, K.: No-reference visual quality assessment for image inpainting. In: Proceedings of SPIE 9399, Image Processing: Algorithms and Systems XIII (March 16, 2015), p. 93990U (2015)

  41. Wang, M., Yan, B., Ngan, K.N.: An efficient framework for image/video inpainting. Signal Process. Image Commun. 28(7), 753–762 (2013)

    Article  Google Scholar 

  42. Zhang, F., Li, S., Ma, L., Ngan, K.N.: Limitation and challenges of image quality measurement. In: Proceedings of SPIE 7744, Visual Communications and Image Processing 2010 (July 13, 2010), pp. 774402–774402–8 (2010)

Download references

Acknowledgements

We deeply thank G. Facciolo, S. Masnou and G.P. Panasenko for their help. This work was supported by the ERC POC project ARTIV1 contract number 727283, by the ANR project “SRGI” ANR-15-CE40-0018, by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH (in a joint call with Programme Gaspard Monge en Optimisation et Recherche Opérationnelle), by the iCODE institute, research project of the Idex Paris-Saclay, by the POCI-01-0145-FEDER-006933/SYSTEC project financed by ERDF and FCT through COMPETE2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Chertovskih.

Appendix A: Sub-Riemannian Geometry

Appendix A: Sub-Riemannian Geometry

In this Appendix, we recall some standard definitions of sub-Riemannian geometry and hypoelliptic operators. Classical texts are [2, 3, 22, 30].

Definition 1

A (nm)-sub-Riemannian manifold is given by a triple \((M,{\blacktriangle },{\mathbf {g}})\), where

  • M is a connected smooth manifold of dimension n;

  • \({\blacktriangle }\) is a smooth distribution of constant rank \(m< n\) satisfying the Hörmander condition. That is, \({\blacktriangle }\) is a smooth map that associates to \(q\in M\) an m-dimensional subspace \({\blacktriangle }(q)\) of \(T_qM\), such that \(\forall ~q\in M\) we have

    $$\begin{aligned} T_qM={{{\mathrm{span}}}}\lbrace [X_1,[\ldots [X_{k-1},X_k]]](q)~|~X_i\in \mathrm {Vec}_H(M)\rbrace . \end{aligned}$$

    Here, \(\mathrm {Vec}_H(M)\) denotes the set of horizontal smooth vector fields on M, i.e.,

    $$\begin{aligned} \mathrm {Vec}_H(M)=\lbrace X\in \mathrm {Vec}(M)\ |\ X(q)\in {\blacktriangle }(q)~\ \forall ~q\in M\rbrace . \end{aligned}$$
  • \({\mathbf {g}}_q\) is a Riemannian metric on \({\blacktriangle }(q)\), smooth as function of q.

A Lipschitz continuous curve \(q(\cdot ):[0,T]\rightarrow M\) is said to be horizontal if \(\dot{q}(t)\in {\blacktriangle }(q(t))\) for almost every \(t\in [0,T]\). Given an horizontal curve \(q(\cdot ):[0,T]\rightarrow M\), the length of \(q(\cdot )\) is

$$\begin{aligned} \ell (q(\cdot ))=\int _0^T \sqrt{ {\mathbf {g}}_{q(t)} (\dot{q}(t),\dot{q}(t))}~\hbox {d}t. \end{aligned}$$

The distance induced by the sub-Riemannian structure on M is the function

$$\begin{aligned} d(q_0,q_1)= & {} \inf \lbrace \ell (q(\cdot ))\mid q(0)=q_0,q(T)\\= & {} q_1, q(\cdot )\ \mathrm {horizontal}\rbrace . \end{aligned}$$

The connectedness assumption for M and the Hörmander condition guarantee the finiteness and the continuity of \(d(\cdot ,\cdot )\) with respect to the topology of M (Chow’s Theorem, see for instance [2]). The function \(d(\cdot ,\cdot )\) is called the Carnot-Carathéodory distance and gives to M the structure of metric space.

Locally, the pair \(({\blacktriangle },{\mathbf {g}})\) can be specified by assigning a set of m smooth vector fields spanning \({\blacktriangle }\), that are moreover orthonormal for \({\mathbf {g}}\), i.e.,

$$\begin{aligned} {\blacktriangle }(q)={{{\mathrm{span}}}}\lbrace X_1(q),\ldots ,X_m(q)\rbrace ,~~~{\mathbf {g}}_q(X_i(q),X_j(q))=\delta _{ij}. \end{aligned}$$
(14)

Such a set \(\lbrace X_1,\ldots ,X_m\rbrace \) is called a local orthonormal frame for the sub-Riemannian structure. When \(({\blacktriangle },{\mathbf {g}})\) can be defined by m globally defined vector fields as in (14) we say that the sub-Riemannian manifold is trivializable.

Given a trivializable (nm)-sub-Riemannian manifold, the problem of finding a curve realizing the distance between two fixed points \(q_0,q_1\in M\) is naturally formulated as the following optimal control problem

$$\begin{aligned} \left\{ \begin{aligned} \phantom {o}&\dot{q}(t)=\sum _{i=1}^m u_i(t) X_i(q(t)), \ \ u_i(\cdot ) \in L^\infty ([0,T],\mathbb {R}), \\ \phantom {o}&\int \limits _0^T \sqrt{\sum \nolimits _{i=1}^m u_i^2(t)}~\hbox {d}t \, \rightarrow \, \min ,\\ \phantom {o}&q(0)=q_0, \ \ \ q(T)=q_1.\\ \end{aligned} \right. \end{aligned}$$

1.1 A.1 Diffusion in a Sub-Riemannian Manifold

Given a sub-Riemannian manifold \((M,{\blacktriangle },{\mathbf {g}})\) and a smooth volume \(\omega \) on M, the sub-Riemannian heat equation is the diffusion equation:

$$\begin{aligned} \partial _t \psi =\varDelta _H \psi , \end{aligned}$$
(15)

where \(\varDelta _H\) is the sub-Riemannian (or horizontal) Laplacian, defined by

$$\begin{aligned} \varDelta _H \varphi ={{\mathrm{div}}}_\omega {{\mathrm{grad}}}_H \varphi , \qquad \varphi \in C^2(M). \end{aligned}$$

Here, \({{\mathrm{div}}}_\omega \) is the divergence with respect to the volume \(\omega \) and \({{\mathrm{grad}}}_H\varphi \) is the horizontal gradient of \(\varphi \). That is, it is the unique vector field satisfying, for every \(q\in M\),

$$\begin{aligned} {\mathbf {g}_q}({{\mathrm{grad}}}_H \varphi (q),v)= d_q\varphi (v) \text{ for } \text{ every } v\in {\blacktriangle }(q). \end{aligned}$$

If \(\lbrace X_1,\ldots ,X_m\rbrace \) is a local orthonormal frame, it follows that \({{\mathrm{grad}}}_H \varphi = \sum _{i=1}^m(X_i\varphi )X_i\), and thus that

$$\begin{aligned} \varDelta _H\varphi = \sum _{i=1}^m \left( X_i^2\varphi + ({{\mathrm{div}}}_\omega X_i)X_i\varphi \right) . \end{aligned}$$

Thanks to the Hörmander condition assumed in the definition of the sub-Riemannian manifold, the celebrated Hörmander Theorem [24], implies the following.

Theorem 1

The operators \(\varDelta _H\) (operating on functions \(\varphi :M\rightarrow \mathbb {R}\)) and \(\varDelta _H-\partial _t\) (operating on functions \(\psi :M\times \mathbb {R}\rightarrow \mathbb {R}\)) are hypoelliptic.

We recall that a second-order differential operator L is said to be hypoelliptic if for every distribution \(\varphi \) defined on an open set \(\Omega \) of a manifold N, the condition \(L\varphi \in {C}^\infty (\Omega )\) implies that \(\varphi \in {C}^\infty (\Omega )\). In particular, the hypoellipticity of \(\varDelta _H-\partial _t\) implies that any solution to the heat equation (15) on \( M\times ]t_0,t_1[\) is smooth.

Remark 2

The sub-Riemannian structure studied in this paper is the one on \(PT\mathbb {R}^2\) for which the distribution is given by the vector fields

$$\begin{aligned} X_1(q) = \cos \theta \frac{\partial }{\partial x} + \sin \theta \frac{\partial }{\partial y}, \ \ \ X_2(q) = \frac{\partial }{\partial \theta }. \end{aligned}$$

The metric \(\mathbf {g}\) is then chosen such that \(\lbrace X_1,X_2\rbrace \) are orthogonal, and \({\mathbf {g}}(X_1,X_1)=1\), \({\mathbf {g}}(X_2,X_2)=1/\beta \), for some given \(\beta >0\). By taking as volume on \(PT\mathbb {R}^2\) the Lebesgue measure, i.e., \(\omega = dx\,dy\,d\theta \), since \(X_1\) and \(X_2\) are divergence free, one immediately gets

$$\begin{aligned} \varDelta _H= (X_1)^2 + \beta (X_2)^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscain, U.V., Chertovskih, R., Gauthier, JP. et al. Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion. J Math Imaging Vis 60, 1231–1245 (2018). https://doi.org/10.1007/s10851-018-0810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0810-4

Keywords

Navigation