Advertisement

Microwave Analysis with Monte Carlo Methods for ECH Transmission Lines

  • M. C. Kaufman
  • C. Lau
  • G. R. Hanson
Article
  • 92 Downloads

Abstract

A new code framework, MORAMC, is presented which model transmission line (TL) systems consisting of overmoded circular waveguide and other components including miter bends and transmission line gaps. The transmission line is modeled as a set of mode converters in series where each component is composed of one or more converters. The parametrization of each mode converter can account for the fabrication tolerances of physically realizable components. These tolerances as well as the precision to which these TL systems can be installed and aligned gives a practical limit to which the uncertainty of the microwave performance of the system can be calculated. Because of this, Monte Carlo methods are a natural fit and are employed to calculate the probability distribution that a given TL can deliver a required power and mode purity. Several examples are given to demonstrate the usefulness of MORAMC in optimizing TL systems.

Keywords

ITER Transmission lines Electron cyclotron heating Monte Carlo 

Notes

Acknowledgements

The authors would like to thank Guiding Wang (UCLA) for providing experimental data for the transmission line losses of the ITER LFSR test stand and also Tim Bigelow (ORNL) for valuable discussion. This work was performed under the U.S. DOE contract no. DE-AC05-00OR22725.

References

  1. 1.
    M. Henderson, G. Saibene, C. Darbos, D. Farina, L. Figini, M. Gagliardi, F. Gandini, T. Gassmann, G. Hanson, A. Loarte, T. Omori, E. Poli, D. Purohit, and K. Takahashi, The targeted heating and current drive applications for the ITER electron cyclotron system, Physics of Plasmas 22 (2015), no. 2, 021808.Google Scholar
  2. 2.
    M. A. Henderson and other, A revised ITER EC system baseline design proposal (J. Lohr, ed.), 2009.Google Scholar
  3. 3.
    S.P. Morgan Jr., Mode conversion losses in transmission of circular electric waves through slightly non-cylindrical guides, Journal of Applied Physics 21 (1950), no. 4, 329–338.Google Scholar
  4. 4.
    H. E. Rowe and W. D. Warters, Transmission in multimode waveguide with random imperfections, Bell System Technical Journal 41 (1962), 1031–1170.Google Scholar
  5. 5.
    R. G. Olsen, Statistical circuit design: The application of Monte Carlo techniques to the study of impairments in the waveguide transmission system, The Bell System Technical Journal 50 (1971), no. 4, 1293–1310.Google Scholar
  6. 6.
    M. A. Henderson, S. Alberti, J. Bird, J. Doane, B. Elzendoorn, C. Flemming, T. P. Goodman, F. Hoekzema, J. P. Hogge, G. MacMillan, J. C. Magnin, B. Pioscyk, L. Porte, M. Q. Tran, and A. G. A. Verhoeven, An ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project, Nuclear Fusion 43 (2003), no. 11, 1487.Google Scholar
  7. 7.
    J. L. Doane, Design of circular corrugated waveguides to transmit millimeter waves at ITER, Fusion Science and Technology 53 (2008), no. 1, 159–173.Google Scholar
  8. 8.
    J. G. Hansen, R c Calculation for Embedding in ECH Mode Conversion Code. Technical report, US ITER, 2014. US_D_22QJDZ v1.1.Google Scholar
  9. 9.
    C. Luttrell, T. Bigelow, E. Coffey, I. Griffith, G. Hanson, A. Lumsdaine, A. Melin, and C. Schaich, Analysis of ITER ECH transmission line waveguide couplings, Fusion Science and Technology 68 (2015), no. 2, 402–406.Google Scholar
  10. 10.
    E. Coffey, G. Hanson, D. Hill, T. Jones, A. Lumsdaine, C. Luttrell, and C. Schaich, Update on cooling for the ITER ECH waveguide transmission line, Fusion Science and Technology 72 (2017), no. 3, 505–509.Google Scholar
  11. 11.
    J.B. Tipton Jr., A. Lumsdaine, C. Schaich, and G.R. Hanson, Design and analysis of 140-degree miter bend for high power electron cyclotron heating transmission lines, Fusion Science and Technology 72 (2017), no. 4, 616–622.Google Scholar
  12. 12.
    J. L. Doane, Propagation and mode coupling in corrugated and smooth-wall circular waveguides, Infrared and millimeter waves 13 (1985), 123–170.Google Scholar
  13. 13.
    J. W. Carlin and S.C. Moorthy, WT4 millimeter waveguide: TE 01 transmission in waveguide with axial curvature, Bell System Technical Journal 56 (1977), 1849–1872.Google Scholar
  14. 14.
    E. A. Nanni, S. K. Jawla, M. A. Shapiro, P. P. Woskov, and R. J. Temkin, Low-loss transmission lines for high-power terahertz radiation, Journal of Infrared Millimeter, and Terahertz Waves 33 (2012), no. 7, 695–714.Google Scholar
  15. 15.
    J.P. Anderson, J.L. Doane, H.J. Grunloh, R.C. O’Neill, R. Ikeda, Y. Oda, K. Takahashi, and K. Sakamoto, High power testing of water-cooled waveguide for ITER-like ECH transmission lines, Nuclear Fusion 57 (2017), no. 5, 056030.Google Scholar
  16. 16.
    M. A. Shapiro, E. J. Kowalski, J. R. Sirigiri, D. S. Tax, R. J. Temkin, T. S. Bigelow, J. B. Caughman, and D. A. Rasmussen, Loss estimate for ITER ECH transmission line including multimode propagation, Fusion Science and Technology 57 (2010), 196–207.Google Scholar
  17. 17.
    E. J. Kowalski, M. A. Shapiro, and R.J. Temkin, Simple correctors for elimination of high-order modes in corrugated waveguide transmission lines, IEEE Transactions on Plasma Science 42 (2014), no. 1, 29–37.Google Scholar
  18. 18.
    J. Doane, J. Anderson, H. Grunloh, and W. Wu, Power monitor miter bends for high-power microwave transmission, Fusion Engineering and Design 93 (2015), 1–8.Google Scholar
  19. 19.
    J. L. Doane and C. P. Moeller, HE 11 mitre bends and gaps in a circular corrugated waveguide, International Journal of Electronics 77 (1994), 489–509.Google Scholar
  20. 20.
    R Callis and other, ECH Technical Meeting. San Diego, 2011.Google Scholar
  21. 21.
    J. L. Doane, Grating polarizers in waveguide miter bends, International Journal of Infrared and Millimeter Waves 13 (1992), no. 11, 1727–1743.Google Scholar
  22. 22.
    D. Wagner and F. Leuterer, Broadband polarizers for high-power multi-frequency ecrh systems, International Journal of Infrared and Millimeter Waves 26 (2005), no. 2, 163–172.Google Scholar
  23. 23.
    F. A. A. Felici, ECPOL: equations and Matlab tools for EC wave reflection and polarization calculations, Technical report, EPFL, Lausanne, 2012.Google Scholar
  24. 24.
    T. Ii, S. Kubo, T. Shimozuma, S. Kobayashi, K. Okada, Y. Yoshimura, H. Igami, H. Takahashi, S. Ito, Y. Mizuno, K. Okada, R. Makino, K. Kobayashi, Y. Goto, and T. Mutoh, Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device, Review of Scientific Instruments 86 (2015), no. 2, 023502.Google Scholar
  25. 25.
    E. J. Kowalski, D. S. Tax, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, T. S. Bigelow, and D. A. Rasmussen, Linearly polarized modes of a corrugated metallic waveguide, IEEE Transactions on Microwave Theory and Techniques 58 (2010), no. 11, 2772–2780.Google Scholar
  26. 26.
    G. Wang, W. A. Peebles, E. J. Doyle, N. A. Crocker, C. Wannberg, C. Lau, G. R. Hanson, and J.L. Doane, Evaluation of low-frequency operational limit of proposed ITER low-field-side reflectometer waveguide run including miter bends, Review of Scientific Instruments 88 (2017), no. 10, 103508.Google Scholar
  27. 27.
    X. Donghui, Z. Jun, R. Jun, H. Mei, L. Zhihong, W. He, C. Gangyu, W. Chao, L. Bo, and Z. Ge, Design of the transmission lines for 140 ghz ecrh system on hl-2a, Plasma Science and Technology 16 (2014), no. 3, 267.Google Scholar
  28. 28.
    K. Ohkubo, S. Kubo, H. Idei, M. Sato, T. Shimozuma, and Y. Takita, Coupling of tilting gaussian beam with hybrid mode in the corrugated waveguide, International Journal of Infrared and Millimeter Waves 18 (1997), no. 1, 23–41.Google Scholar
  29. 29.
    K. Takahashi, K. Kajiwara, Y. Oda, A. Kasugai, N. Kobayashi, K. Sakamoto, J. Doane, R. Olstad, and M. Henderson, High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system, Review of Scientific Instruments 82 (2011), no. 6, 063506.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations