Foundations of Science

, Volume 23, Issue 2, pp 415–426 | Cite as

Cosmological Black Holes and the Direction of Time

  • Gustavo E. Romero
  • Daniela Pérez
  • Federico G. López Armengol


Macroscopic irreversible processes emerge from fundamental physical laws of reversible character. The source of the local irreversibility seems to be not in the laws themselves but in the initial and boundary conditions of the equations that represent the laws. In this work we propose that the screening of currents by black hole event horizons determines, locally, a preferred direction for the flux of electromagnetic energy. We study the growth of black hole event horizons due to the cosmological expansion and accretion of cosmic microwave background radiation, for different cosmological models. We propose generalized McVittie co-moving metrics and integrate the rate of accretion of cosmic microwave background radiation onto a supermassive black hole over cosmic time. We find that for flat, open, and closed Friedmann cosmological models, the ratio of the total area of the black hole event horizons with respect to the area of a radial co-moving space-like hypersurface always increases. Since accretion of cosmic radiation sets an absolute lower limit to the total matter accreted by black holes, this implies that the causal past and future are not mirror symmetric for any spacetime event. The asymmetry causes a net Poynting flux in the global future direction; the latter is in turn related to the ever increasing thermodynamic entropy. Thus, we expose a connection between four different “time arrows”: cosmological, electromagnetic, gravitational, and thermodynamic.


Black holes Irreversibility Cosmology 



This work is supported by Grant PIP 0338,(CONICET) and Grant AYA2016-76012-C3-1-P (Ministro de Educación, Cultura y Deporte, España).


  1. Bunge, M. (1967). Foundations of physics. Berlin: Springer.CrossRefGoogle Scholar
  2. Clarke, C. J. S. (1977). Time in general relativity. In J. S. Earman, C. N. Glymour, & J. J. Stachel (Eds.), Foundations of space–time theories. Minnesota studies in the philosophy of science, 8 (pp. 94–108). Minnesota: University of Minnesota Press.Google Scholar
  3. Faraoni, V. (2015). Cosmological and black hole apparent horizons., Lectures Notes in Physics Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  4. Gao, C., Chen, X., Faraoni, V., & Shen, Y. (2008). Does the mass of a black hole decrease due to the accretion of phanton energy? Physical Review D, 78, 024008.CrossRefGoogle Scholar
  5. Gold, T. (1962). The arrow of time. American Journal of Physics, 30(6), 403–410.CrossRefGoogle Scholar
  6. Hawking, S. W. (1968). Gravitational radiation in an expanding universe. Journal of Mathematical Physics, 9, 598–604.CrossRefGoogle Scholar
  7. Hawking, S. W. (1974). Black hole explosions. Nature, 248, 30–31.CrossRefGoogle Scholar
  8. Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43, 199–220.CrossRefGoogle Scholar
  9. Hawking, S. W. (1985). Arrow of time in cosmology. Physical Review D, 32, 2489–2495.CrossRefGoogle Scholar
  10. Hayward, S. A. (1994). Quasilocal gravitational energy. Physical Review D, 49, 831–839.CrossRefGoogle Scholar
  11. McVittie, G. C. (1933). The mass-particle in an expanding universe. Monthly Notices of the Royal Astronomical Society, 93, 325–339.CrossRefGoogle Scholar
  12. Nandra, R., Lasembly, A. N., & Hobson, M. P. (2012). The effect of a massive object on an expanding universe. Monthly Notices of the Royal Astronomical Society, 422, 2931–2944.CrossRefGoogle Scholar
  13. Nandra, R., Lasembly, A. N., & Hobson, M. P. (2012). The effect of an expanding universe on massive objects. Monthly Notices of the Royal Astronomical Society, 422, 2945–2959.CrossRefGoogle Scholar
  14. Nolan, B. C. (1998). A point mass in an isotropic universe. Existence, uniqueness and basic properties. Physical Review D, 58, 064006.CrossRefGoogle Scholar
  15. Penrose, R. (1979). Singularities and time-asymmetry. In S. W. Hawking & W. Israel (Eds.), General relativity: An Einstein centennial (pp. 581–638). Cambridge: Cambridge University Press.Google Scholar
  16. Perlmutter, S., et al. (1999). Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae. Astrophysical Journal, 517, 565–586.CrossRefGoogle Scholar
  17. Planck Collaboration. (2014). Planck 2013 results. XVI. Cosmological parameters. Astronomy & Astrophysics, 571, id.A16, 66 pp.Google Scholar
  18. Romero, G. E., & Pérez, D. (2011). Time and irreversibility in an accelerating universe. International Journal of Modern Physics D, 20(14), 2831–2838.CrossRefGoogle Scholar
  19. Romero, G. E. (2014). Philosophical issues of black holes. In A. Barton (Ed.), Advances in Black Holes Research (pp. 27–58). New York: Nova Science Publishers.Google Scholar
  20. Romero, G. E., & Vila, G. S. (2014). Introduction to black hole astrophysics., Lectures notes in physics Berlin: Springer.CrossRefGoogle Scholar
  21. Sciama, D. (1967). Retarded potentials and the expansion of the universe. In T. Gold & D. L. Schumacher (Eds.), The nature of time (pp. 55–67). Ithaca: Cornell University Press.Google Scholar
  22. Wald, R. M. (1984). General relativity. Chicago: Chicago University Press.CrossRefGoogle Scholar
  23. Wheeler, J. A., & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17, 157–181.CrossRefGoogle Scholar
  24. Wheeler, J. A., & Feynman, R. P. (1949). Classical electrodynamics in terms of direct interparticle action. Reviews of Modern Physics, 21, 425–433.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Gustavo E. Romero
    • 1
  • Daniela Pérez
    • 1
  • Federico G. López Armengol
    • 1
  1. 1.Instituto Argentino de Radioastronomía (IAR, CCT La Plata, CONICET)Buenos AiresArgentina

Personalised recommendations