## Abstract

A supertask consists in the performance of an infinite number of actions in a finite time. I show that any attempt to carry out a supertask will produce a divergence of the curvature of spacetime, resulting in the formation of a black hole. I maintain that supertaks, contrarily to a popular view among philosophers, are physically impossible. Supertasks, literally, collapse under their own weight.

## Keywords

Change Events Formal ontology Spacetime Quantum mechanics## References

- Benacerraf, P. (1962). Tasks, super-tasks, and modern Eleatics.
*Journal of Philosophy*,*LIX*, 765–784.CrossRefGoogle Scholar - Bunge, M. (1967).
*Foundations of physics*. New York: Springer.CrossRefGoogle Scholar - Bunge, M. (1977).
*Ontology I: The furniture of the world*. Dordrecht: Kluwer.Google Scholar - Hawking, S. W., & Ellis, G. F. R. (1973).
*The large scale structure of space-time*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Joshi, P. S. (1993).
*Global aspects in gravitation and cosmology*. Oxford: Oxford Clarendon Press.Google Scholar - Mandelshtam, L. I., & Tamm, I. E. (1945). The uncertainty relation between energy and time in nonrelativistic quantum mechanics.
*Journal of Physics*,*IX*, 249–254.Google Scholar - Perez Bergliaffa, S. E., Romero, G. E., & Vucetich, H. (1993). Axiomatic foundations of non-relativistic quantum mechanics: A realistic approach.
*International Journal of Theoretical Physics*,*32*, 1507–1522.CrossRefGoogle Scholar - Perez Bergliaffa, S. E., Romero, G. E., & Vucetich, H. (1998). Toward an axiomatic pregeometry of space-time.
*International Journal of Theoretical Physics*,*37*, 2281–2298.CrossRefGoogle Scholar - Pérez Laraudogoitia, J. (2011). Supertasks, the Stanford encyclopedia of philosophy. In Edward N. Zalta (ed.), URL: http://plato.stanford.edu/archives/spr2011/entries/spacetime-supertasks/.
- Romero, G. E. (2013a). From change to spacetime: An eleatic journey.
*Foundations of Science*,*18*, 139–148.CrossRefGoogle Scholar - Romero, G. E. (2013b). Adversus singularitates: The ontology of spacetime singularities.
*Foundations of Science*,*18*, 297–306.CrossRefGoogle Scholar - Weyl, H. (1928).
*Gruppentheorie Und Quantenmechanik*. Leipzig: Hirzel.Google Scholar

## Copyright information

© Springer Science+Business Media Dordrecht 2013