Skip to main content

Advertisement

Log in

On the Environmental Efficiency of Water Storage: the Case of a Conjunctive use of Ground and Rainwater

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Rainwater harvesting, consisting in collecting runoff from precipitation, has been widely developed to stop groundwater declines and even raise water tables. However, this expected environmental effect is not self-evident. We show in a simple setting that the success of this conjunctive use depends on whether the runoff rate is above a threshold value. Moreover, the bigger the storage capacity, the higher the runoff rate must be to obtain an environmentally efficient system. We also extend the model to include other hydrological parameters and ecological damages, which respectively increase and decrease the environmental efficiency of rainwater harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See http://www.unep.or.jp/ietc/publications/urban/urbanenv-2/9.asp.

  2. For more details, see Annex 1 of the study Agricultural Technologies for Developing Countries of the European parliament.

  3. The detailed proofs are available upon request.

  4. For instance, water diversion in the Lower Tarim River in China induces a decline in groundwater recharge [16].

  5. With 3 multipliers, we usually expect 23 cases. But (i) the capacity and non-negativity constraints on RW cannot both be satisfied, (ii) by our boundary conditions at least one source of water is used, (iii) if only RW is used the capacity may or may not be reached, and (iv) there is a boundary regime for which the use of GW or RW is indifferent.

  6. This is clearly a sufficient condition. Conjunctive use may occur for higher water tables, but this allows us to refine the analysis.

  7. Observe that this sufficient condition is independent of the runoff. This parameter can used later without additional restrictions.

  8. For more details, see Boers and Ben-Asher [3].

  9. We can easily compute the partial derivatives: \(\frac {\partial h_{r}}{\partial R}=-\frac {(1-\rho )\left [ P^{\prime }\left ((1-\rho )R+\rho W\right ) +\frac {C^{\prime }\left (h\right ) }{\delta }\right ] }{-C^{\prime }\left (h\right ) +\frac {(1-\rho )}{\delta }C^{\prime \prime } \left (h\right ) (R-W)}>0\) and \(\frac {\partial h_{g}}{\partial R}=-\frac {(1-\rho )\left [ P^{\prime }\left ((1-\rho ) R\right ) +\frac {C^{\prime }\left (h\right ) }{\delta }\right ] }{-C^{\prime }\left (h\right ) +\frac {(1-\rho )}{\delta } C^{\prime \prime }\left (h\right ) R}>0\).

  10. This last problem is the most complete case: it contains, as subcases, the problems analyzed in Sections 5 and 6. The Appendix provides a complete analysis of this integrated problem.

  11. Note first that the LHS of equality (20) (respectively Eqs. 21) and (24) (respectively Eq. 25) are unchanged, while the same positive constant is added to the RHS of Eq. 24 (respectively Eq. 25). If we remember that \(C^{\prime }<0\) and \(C^{\prime \prime }>0\), the result follows.

References

  1. Allen, R., & Gisser, M. (1984). Competition versus Optimal Control in Groundwater Pumping when Demand is Nonlinear. Water Resources Research, 20, 752–756.

    Article  Google Scholar 

  2. Azaiez, M.N. (2002). A model for conjunctive use of ground and surface water with opportunity costs. European journal of Operational Research, 143, 611–624.

    Article  Google Scholar 

  3. Boers, Th.M., & Ben-Asher, J. (1982). A review of rainwater harvesting. Agricultural Water Management, 5, 145–158.

    Article  Google Scholar 

  4. Brill, T.C., & Burness, H.S. (1994). Planning versus competitive rates of groundwater pumping. Water Resources Research, 30(6), 1873–1880.

    Article  Google Scholar 

  5. Burness, H.S., & Martin, W.E. (1998). Management of a tributary aquifer. Water Resources Research, 24, 1339–1344.

    Article  Google Scholar 

  6. Burt, O.R. (1934). The economics of conjunctive use of ground and surface water. Hilgardia, 32, 31–111.

    Google Scholar 

  7. Dinar, A., & Xepapadeas, A. (1998). Regulating water quantity and quality in irrigated agriculture. Journal of Environmental Management, 54(4), 273–289.

    Article  Google Scholar 

  8. Esteban, E., & Albiac, J. (2011). Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect. Ecological Economics, 70(11), 2062–2069.

    Article  Google Scholar 

  9. FAO (1993). Land and water integration a driver basin management. In Proceedings of an FAO informal workshop, Rome.

  10. Feinerman, E., & Knapp, K. (1983). Benefits from groundwater management: magnitude, Sensitivity, and Distribution. American Journal of Agricultural Economics, 65, 703–710.

    Article  Google Scholar 

  11. Gale, D., & Nikaido, H. (1965). The jacobian matrix and global univalence of mapping. Annals of Mathematics, 159, 81–93.

    Article  Google Scholar 

  12. Gautier, C. (2008). Water alternatives (chap.14). In oil, water, and climate : an introduction (pp. 270–288): Cambridge University Press.

  13. Gemma, M., & Tsur, Y. (2007). The stabilization value of groundwater and conjunctive water management under uncertainty. Review of Agricultural Economics, 29(3), 540–48.

    Article  Google Scholar 

  14. Gisser, M., & Sánchez, D.A. (1980). Competition versus optimal control in groundwater pumping. Water Resources Research, 31, 638–642.

    Article  Google Scholar 

  15. Hellegers, P., Zilberman, D., & Van Ierland, E. (2001). Dynamics of agricultural groundwater extraction. Ecological Economics, 37(2), 303–311.

    Article  Google Scholar 

  16. Huang, T., & Pang, Z. (2010). Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: Evidence from environmental isotopes and water chemistry. Journal of Hydrology, 387, 188–201.

    Article  CAS  Google Scholar 

  17. Koundouri, P. (2004a). Potential for Groundwater Management: Gisser-Sánchez Effect Reconsidered. Water Resources Research, 40(6), W06S16.

    Google Scholar 

  18. Koundouri, P., & Christou, C. (2003). Dynamic adaptation to resource scarcity and backstop availability : Theory and Application to Groundwater. The Australian Journal of Agricultural and Resource Economics, 50, 227–245.

    Article  Google Scholar 

  19. Knapp, K., & Olson, L. (1995). The economics of cojunctive groundwater management with stochastic surface supplies. Journal of Environmental Economics and Management, 28, 340–356.

    Article  Google Scholar 

  20. Krishna, J. (1989). Cistern Water Systems in the US Virgin islands,. In Proceedings of 4th International Conference on Rainwater Cistern Systems, Manila, Philippines, (Vol. E2 pp. 1–11).

  21. Krulce, D.L., Roumasset, J.A., & Wilson, T (1997). Optimal management of a renewable and replaceable resource: The case of coastal groundwater. American Journal of Agricultural Economics, 79(4), 1218–28.

    Article  Google Scholar 

  22. Mas-Colell, A. (1979). Homeomorphims of compact, convex sets and the jacobian matrix. SIAM Journal of Mathematical Analysis, 10, 1105–1109.

    Article  Google Scholar 

  23. Negri, D.H. (1989). The common property aquifer as a differential game. Water Resources Research, 25, 9–15.

    Article  Google Scholar 

  24. Nieswiadomy, M. (1985). The demand for irrigation water in the high plains of texas, 1957-1980. American Journal of Agricultural Economics, 67(9), 619–626.

    Article  Google Scholar 

  25. Perrens, S. (1975). Collection and storage strategies for domestic rainwater systems in Australia, Hydrology Papers, Institution of Engineers, Camberra, Australia.

  26. Pongkijvorasin, S., & Roumasset, J. (2007). Optimal conjunctive use of surface and groundwater with recharge and return flows: Dynamic and spatial patterns, review of agricultural economics. Agricultural and Applied Economics Association, 29(3), 531–539.

    Google Scholar 

  27. Provencher, B. (1995). Issues in the conjunctive use of surface water and groundwater. In D. Bromley (Ed.) The handbook of environmental economics: Blackwell.

  28. Provencher, B., & Burt, O. (1993). The externalities associated with the common property exploitation of groundwater. Journal of Environmental Economics and Management, 24, 139–158.

    Article  Google Scholar 

  29. Ranganathan, C.R., & Palanisami, K. (2004). Modeling economics of conjunctive surface an groundwater irrigation systems. Irrigation and Drainage Systems, 18, 127–143.

    Article  Google Scholar 

  30. Roebuck, R.M. (2007). A whole life costing approach for rainwater harvesting systems, Ph.D. Thesis, (p. 546): Bradford University.

  31. Roseta-palma, C. (2002). Groundwater management when Water Quality is Endogenous. Journal of Environmental Economics and Management, 44, 93–105.

    Article  Google Scholar 

  32. Rubio, S.J., & Casino, B. (2001). Competitive versus efficient extraction of a common property resource: The groundwater case. Journal of Economic Dynamics and Control, 25, 1117–1137.

    Article  Google Scholar 

  33. Roumasset, J.A., & Wada, C.A. (2012). Ordering the extraction of renewable resources: the case of multiple aquifers. Resource and Energy Economics, 34, 112–128.

    Article  Google Scholar 

  34. Soubeyran, R., Tidball, M., Tomini, A., & Erdlenbruch, K. (2012). (Anti-)coordination problems with scarce water resources. Environmental and Resource Economics, 62(1), 19–34.

    Article  Google Scholar 

  35. Stahn H., & A. Tomini (2011). Rainwater harvesting under endogenous capacity of storage: a solution to aquifer preservation?. In Press Annals of Economics and Statistics.

  36. Tsur, Y. (1997). Y the economics of conjunctive ground and surface water irrigation system : Basic principles and empirical evidence from southern california. In D. Parker, & Y. Tsur (Eds.), Decentralization and coordination of water resource management: Kluwer Academic Publishers.

  37. Tsur, Y. (1991). Graham-Tomasi The buffer value of groundwater with stochastic surface supplies. Journal of Environmental Economics and Management, 21, 201–224.

    Article  Google Scholar 

  38. Vickner, S., Hoag, D., Frasier, W.M., & Ascough, J. (1998). A dynamic Economic Analysis of Nitrate Leaching in Corn Production under Nonuniform Irrigation Conditions. American Journal Agricultural Economics, 80, 397–408.

    Article  Google Scholar 

  39. Xepapadeas, A.P. (1992). Environmental policy design and dynamic nonpoint-source pollution. Journal of Environmental Economics and Management, 23, 22–39.

    Article  Google Scholar 

  40. Yadav, S. (1997). Dynamic optimization of nitrogen use when groundwater contamination is internalized at the standard in the long run. American journal of Agricultural Economics, 79, 931–945.

    Article  Google Scholar 

  41. Zeitouni, N., & Dinar, A. (1997). Mitigating negative water quality and quality externalities by joint management of adjacent aquifers. Environmental and Resource Economics, 9, 1–20.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the advisory editor of Environmental Modeling & Assessment for helpful comments on an early version of this paper. The usual disclaimer of course applies. Support from the Labex AMSE (ANR-11-IDEX-0001-02) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubert Stahn or Agnes Tomini.

Appendices

Appendix

1.1 Appendix A: The Solution to the General Problem

Let us introduce some notations used below:

$$\begin{array}{lll} \rho\in[\varepsilon,1-\beta(1-\varepsilon)] & \beta\in(0,1) &{}\varepsilon\in(0,1)\\ R_{\rho}\equiv(1-\rho)R & {} a\equiv1-\beta>0 &{} b\equiv\!1-\!\rho-\!\beta(1-\varepsilon)>0\\ K_{\varepsilon}\equiv\frac{K}{1-\varepsilon} & {\kern-1.7pt} w(t)\equiv w_{g}(t)& {}{\Gamma}\equiv G^{\prime}\left( 0\right)\\&{\kern25pt}+(1-\varepsilon)w_{r}(t) \\ \mu_{r}(t)\equiv\frac{\mu_{r}^{\prime}(t)}{1-\varepsilon}\geq0 & {\kern-1.5pt} \mu_{W}(t)\equiv\frac{\mu_{W}^{\prime}(t)}{1-\varepsilon}\geq0 & \end{array} $$

1.1.1 A.1 The Problem

Let us consider the following optimal control problem:

$$ \begin{array}{l} \underset{w_{g}(t),w_{r}(t)}{\max}\!{\int}_{0}^{+\infty}exp^{-\delta t}\!\left[{\int}_{0}^{w(t)}\!P(x)dx\,-\,C(h(t)) w_{g}(t)\right.\\\hspace*{7.5pc}\left.-Kw_{r}(t)\,-\,G\left( -\dot{h}(t)\right)\right] dt\\ \!\qquad\text{w.r.t }\!\!\left\{\! \begin{array}{l} (sA)\dot{h}(t)\,=\,(1-\rho)\left( R\,-\,w_{r}(t)\right) \,-\,w_{g}(t)\\ \hspace*{4pc}+\beta\left( w_{g}(t)\,+\,(1\,-\,\varepsilon)w_{r}(t)\right)\\ w_{g}(t)\geq0, 0\leq w_{r}(t)\!\leq\! W\\ h_{0}\text{ given and }h(\infty)\text{ free}. \end{array} \right. \end{array} $$
(A.1)

The current value of the Hamiltonian for this problem is:

$$\begin{array}{@{}rcl@{}} \mathcal{H}&=&{\int}_{0}^{w(t)}P(x)dx-C(h(t))w_{g}(t)-Kw_{r}(t)\\ &&-G\left( -\dot {h}(t)\right) +\lambda(t)\frac{1}{sA}\left[ R_{\rho}-aw_{g}(t)-bw_{r} (t)\right] \end{array} $$

where λ(t)≥0 denotes the shadow value of the groundwater resource. Moreover, if we introduce the Lagrange multipliers μ g (t) and \(\mu _{r}^{\prime }(t)\) associated with the non-negativity constraints on w g (t) and w r (t), respectively, and the implicit price \(\mu _{W}^{\prime }(t)\) of W, the capacity constraint, the Lagrange function associated with this program is:

$$ \mathcal{L}\,=\,\mathcal{H}+\mu_{g}(t)\cdot w_{g}(t)+\mu_{r}^{\prime}(t)\cdot w_{r}(t)+\mu_{W}^{\prime}(t)\cdot\left( W-w_{r}(t)\right). $$
(A.2)

The Hamiltonian conditions are given by systems (CTR1) and (DYN1):

$$(CTR1)\left\{ \begin{array}{ll} P\left( w(t)\right) -C\left( h(t)\right) \\\hspace*{3.13pc}-\frac{a}{sA}\left( \lambda(t)+G^{\prime}\left( -\dot{h}(t)\right) \right) \\\hspace*{3.13pc}+\mu_{g}(t)=0, & (GW_{1})\\ P\left( w(t)\right) -K_{\varepsilon}\\\hspace*{3.13pc}-\frac{b}{\left( 1-\varepsilon\right) sA}\left( \lambda(t)+G^{\prime}\left( -\dot{h}(t)\right) \right) \\\hspace*{3.13pc}+\mu_{r}(t)-\mu_{W}(t)=0, & (RW_{1})\\ \mu_{g}(t)w_{g}(t)=0,\\\quad\mu_{r}(t)w_{r}(t)=0,\\\quad\mu_{W}(t)\left( W-w_{r}(t)\right) =0, & (S1_{1})\\ \mu_{g}(t),\mu_{r}(t),\mu_{W}(t)\geq0, \\\quad w_{g}(t)\geq0,\text{ and }w_{r}(t)\in\left[ 0,W\right], & (S2_{1}) \end{array} \right. $$

and

$$(DYN1)\quad\left\{ \begin{array}{l} \left( sA\right) \dot{h}(t)=R_{\rho}-aw_{g}(t)-bw_{r}(t),\\ \dot{\lambda}(t)=\delta\lambda(t)+C^{\prime}\left( h(t)\right) w_{g}(t). \end{array} \right. $$

1.1.2 A.2 The Construction of the Steady State

Let us consider a steady state satisfying (CTR1) and (DYN1) with \(\dot {h}(t)=\dot {\lambda }(t)=0\). There are eight possible cases, since each of the three Lagrange multipliers may or may not be strictly positive. We nevertheless immediately observe that:

Remark 1

At a steady state: (i) both constrains on w g cannot be simultaneously binding since W > 0, (ii) there must be some GW consumption (i.e., μ g = 0) otherwise \(\dot {h}(t)=0\) implies that \(w_{r}=\frac {R_{\rho }}{b}=\frac {\left (1-\rho \right ) }{\left (1-\rho \right ) -\beta (1-\varepsilon )}R>R\), which is impossible since w r W < R.

Now let us observe:

Lemma 1

If the capacity constraint on RW harvesting is not binding (i.e., μ W =0) at the steady state, then K ε >C(h).

Proof Lemma 1

Since \(\mu _{g}=\mu _{W}=\dot {h}=0,\) the difference between Eqs. (G W 1) and (R W 1) is:

$$ K_{\varepsilon}-C\left( h\right) +\frac{1}{sA}\left( \frac{b} {1-\varepsilon}-a\right) \left[ \lambda+G^{\prime}\left( 0\right) \right] -\mu_{r}=0. $$
(A.3)

Using (i) μ r ≥ 0 and (ii) \(\lambda =-\frac {1}{\delta }C^{\prime }\left (h\right ) w_{g}\) since \(\dot {\lambda }=0\), it follows that:

$$ K_{\varepsilon}-C\left( h\right) \geq\frac{1}{sA}\left( \frac {b}{1-\varepsilon}-a\right) \left( \frac{1}{\delta}C^{\prime}\left( h\right) w_{g}-G^{\prime}\left( 0\right) \right). $$
(A.4)

(iii) Notice that \(\frac {b}{1-\varepsilon }-a=-\frac {\rho -\varepsilon }{1-\varepsilon }<0\) since ρ > ε, and (iv) by assumption \(C^{\prime }<0,G^{\prime }>0.\) The lhs of Eq. A.4 is therefore positive and we can conclude that K ε >C(h). □

From Lemma 1, we assert :

Lemma 2

If we assume that

$$ P\left( \frac{R}{a}\right) >K_{\varepsilon}-\frac{1}{\delta sA}C^{\prime }\left( C^{-1}\left( K_{\varepsilon}\right) \right) \left( R-aW\right) +\frac{a}{sA}G^{\prime}\left( 0\right) $$
(A.5)

the RW storage capacity is always binding at a steady state.

Proof

Assume the contrary, w r < W, so that μ W = 0. Since \(\lambda =-\frac {1}{\delta }C^{\prime }\left (h\right ) w_{g}\), (R W 1) at the steady state can be written as:

$$ \mu_{r}=-P\left( w\right) +K_{\varepsilon}-\frac{b}{\left( 1-\varepsilon \right) sA}\left[ \frac{1}{\delta}C^{\prime}\left( h\right) w_{g}-G^{\prime}\left( 0\right) \right]. $$
(A.6)

Using Lemma 1, i.e., \(K_{\varepsilon }>C(h)\Leftrightarrow C^{-1}\left (K_{\varepsilon }\right ) <h\), and since \(C^{\prime \prime }\geq 0\), we deduce that:

$$\begin{array}{@{}rcl@{}} \mu_{r}&\leq&-P\left( w\right) +K_{\varepsilon}-\frac{b}{\delta (1-\varepsilon)sA}C^{\prime}\left( C^{-1}\left( K_{\varepsilon}\right) \right) w_{g}\\ &&+\frac{b}{\left( 1-\varepsilon\right) sA}G^{\prime}\left( 0\right). \end{array} $$
(A.7)

Moreover, from system (DYN1) at steady state, we know that:

  1. (i)

    \(R_{\rho }-aw_{g}-bw_{r}=0\Leftrightarrow aw_{g}=R_{\rho } -bw_{r}<R_{\rho }-bW\) since we have assumed that w r < W. Moreover, b = 1−ρβ(1−ε) and 1>ρ > ε, we can therefore say:

    $$\begin{array}{@{}rcl@{}} aw_{g}&<&\left( 1-\rho\right) \left( R-W\right) +\beta(1-\varepsilon )W<R\\ &&-(1-\beta)W=R-aW. \end{array} $$
    (A.8)
  2. (ii)

    The total consumption of water is \(w=\frac {R_{\rho }-bw_{r}} {a}+(1-\varepsilon )w_{r}=\frac {1}{a}\left (R_{\rho }-\left (b-a(1-\varepsilon )\right ) w_{r}\right ) \). Since ba(1 − ε) = ερ, we have \(w=\frac {1}{a}\left [ R_{\rho }+\left (\rho -\varepsilon \right ) w_{r}\right ] \). If we now remember that w r < W < R and ε < ρ < 1, we observe that:

    $$ w<\frac{1}{a}\left( (1-\rho)+\left( \rho-\varepsilon\right) \right) R<\frac{R}{1-\beta}. $$
    (A.9)

Under assumptions \(P^{\prime }<0\) and \(C^{\prime }<0\) and items (i) and (ii), we can write condition (A.7) as:

$$\begin{array}{@{}rcl@{}} \mu_{r}&<&-P\left( \frac{R}{1-\beta}\right) +K_{\varepsilon}\\ &&-\frac {b}{a\delta\left( 1-\varepsilon\right) sA}C^{\prime}\left( C^{-1}\left( K_{\varepsilon}\right) \right) \left( R-aW\right) \\ &&+\frac{b}{\left( 1-\varepsilon\right) sA}G^{\prime}\left( 0\right). \end{array} $$
(A.10)

Finally, since \(0<\frac {b}{\left (1-\varepsilon \right ) a}<1\) (see (iii) of the Proof of Lemma 1) \(C^{\prime }<0\) and \(G^{\prime }\left (0\right ) >0\), we can state that:

$$\begin{array}{@{}rcl@{}} \mu_{r}&<&-P\left( \frac{R}{a}\right) +K_{\varepsilon}-\frac{1}{\delta sA}C^{\prime}\left( C^{-1}\left( K_{\varepsilon}\right) \right) \left( R-aW\right) \\ &&+\frac{a}{sA}G^{\prime}\left( 0\right). \end{array} $$
(A.11)

Given the assumption introduced in Eq. A.5, this implies that μ r < 0 which is a contradiction. □

If we now combine Remark 1 and Lemmas 1 and 2, we can say that a steady state, if it exists, verifies:

$$ \left\{ \begin{array}{ll} P\left( w\right) \,-\,C\left( h\right) \,-\,\frac{a}{sA}\left( \lambda \,+\,G^{\prime}\left( 0\right) \right) \,=\,0, & w_{g}\,=\,\frac{1}{a}\left( R_{\rho }\,-\,bW\right), \\ \mu_{W}\,=\,P\left( w\right) \,-\,K_{\varepsilon}\,-\,\frac{b}{\left( 1-\varepsilon \right) sA}\left( \lambda\,+\,G^{\prime}\left( 0\right) \right) , & \lambda\,=\,-\frac{1}{\delta a}C^{\prime}\left( h\right) \left( R_{\rho }\,-\,bW\right), \\ \mu_{W}\!\geq\!0\text{ and }w_{r}\,=\,W, & w\,=\,\frac{1}{a}\left( R_{\rho} \,+\,(\rho\,-\,\varepsilon)W\right). \end{array} \right. $$
(A.12)

In other words, a unique steady state exists, if there exists a unique solution \(h^{\ast }\in \left [ 0,\bar {h}\right ] \) to

$$\begin{array}{@{}rcl@{}} \phi_{1}(h^{\ast})&=&P\left( \frac{1}{a}\left( R_{\rho}+(\rho-\varepsilon )W\right) \right) -C\left( h^{\ast}\right)\\ &&+\frac{1}{\delta sA}C^{\prime }\left( h^{\ast}\right) \left( R_{\rho}\,-\,bW\right) \,-\,\frac{a}{sA}G^{\prime }\left( 0\right)\! =\!0 \end{array} $$
(A.13)

which verifies:

$$\begin{array}{@{}rcl@{}} \mu_{W}&=&P\left( \frac{1}{a}\left( R_{\rho}+(\rho-\varepsilon)W\right) \right)\\ &&-K_{\varepsilon}+\frac{b}{a\delta\left( 1-\varepsilon\right) sA}C^{\prime}\left( h^{\ast}\right) \left( R_{\rho}-bW\right)\\ &&-\frac {b}{\left( 1-\varepsilon\right) sA}G^{\prime}\left( 0\right) \geq0. \end{array} $$
(A.14)

So, let us first observe:

Lemma 3

If condition (A.5) is satisfied, any solution (it is exists) to ϕ 1 (h )=0 verifies μ W >0.

Proof

Using Eq. A.12 and W < R, we get \(w<\frac {1}{a}\left (R_{\rho }+\rho W\right ) <\frac {R}{a}\) and by Eq. A.8 we know that R ρ b W < Ra W. If we now keep in mind that \(P^{\prime }<0\) and \(C^{^{\prime }}<0\), we can deduce from condition (A.5) that:

$$\begin{array}{@{}rcl@{}} 0 & \!<\!&P\left( \frac{R}{a}\right) -K_{\varepsilon}+\frac{1}{\delta sA}C^{\prime}\left( C^{-1}\left( K_{\varepsilon}\right) \right) \left( R-aW\right) -\frac{a}{sA}G^{\prime}\left( 0\right)\\ &\!<\!&\underbrace{P(w)\,-\,K_{\varepsilon}\,+\,\frac{1}{\delta sA}C^{\prime}\left( C^{-1}\left( K_{\varepsilon}\right) \right) \left( R_{\rho}\,-\,bW\right) \,-\,\frac{a} {sA}G^{\prime}\left( 0\right)}_{\equiv\phi_{1}(C^{-1}\left( K_{\varepsilon }\right) )} . \end{array} $$
(A.15)

But ϕ 1(h) is increasing in h since \(C^{\prime }<0\) and C ≥ 0. We deduce that the steady state \(h^{\ast }<C^{-1}\left (K_{\varepsilon }\right ) \) or C(h )>K ε . We can therefore say from Eq. (A.13) that:

$$\begin{array}{@{}rcl@{}} &&P\left( \frac{1}{a}\left( R_{\rho}\,+\,(\rho\,-\,\varepsilon)W\right) \right) \,-\,K_{\varepsilon}\!+\frac{1}{\delta sA}C^{\prime}\left( h^{\ast}\right) \left( R_{\rho}-bW\right)\\ &&-\frac{a}{sA}G^{\prime}\left( 0\right) >0. \end{array} $$
(A.16)

Since \(\frac {b}{a\left (1-\varepsilon \right ) }\in \left (0,1\right ) \), \(C^{\prime }<0\) and \(G^{\prime }\left (0\right ) >0\), we can even state:

$$\begin{array}{@{}rcl@{}} &&P\left( \frac{1}{a}\left( R_{\rho}+(\rho-\varepsilon)W\right) \right) \\&&-K_{\varepsilon}+\frac{b}{a\delta\left( 1-\varepsilon\right) sA}C^{\prime }\left( h^{\ast}\right) \left( R_{\rho}-bW\right) \\&&-\frac{b}{\left( 1-\varepsilon\right) sA}G^{\prime}\left( 0\right) >0 \end{array} $$
(A.17)

or, in other words, that μ W >0. □

We can finally affirm that:

Proposition 10

Under condition (A.5), the path solution to optimization problem (A.1) admits a unique steady state given by Eq. A.12.

Proof

It simply remains to show that ϕ 1(h) = 0 admits a unique solution \(h^{\ast }\in \left [ 0,\bar {h}\right ] \). This is immediate since (i) \(\phi _{1}^{\prime }>0\) because \(C^{\prime }<0\) and C” ≥ 0, (ii) \(\lim _{h\rightarrow 0}\phi _{1}(h)=-\infty \) because \(\lim _{h\rightarrow 0}C(h)=\infty \) and (iii) \(\lim _{h\rightarrow \bar {h}}\phi _{1}(h)>0\). However, this last point is less obvious. So let us first observe that \(\lim _{h\rightarrow \bar {h}}\phi _{1}(h)=P\left (\frac {1} {a}\left (R_{\rho }+(\rho -\varepsilon )W\right ) \right ) -aG^{\prime }\left (0\right )\) since we have assumed that \(C(\bar {h})=C^{\prime }(\bar {h})=0\). Now remark that \(\frac {1}{a}\left (R_{\rho }+(\rho -\varepsilon )W\right ) <\frac {R}{1-\beta }\) since W < R and use condition (A.5) in order to obtain:

$$\begin{array}{@{}rcl@{}} \lim_{h\rightarrow0}\phi_{1}(\bar{h})\!&>&\!P\left( \frac{R}{a}\right) -\frac {a}{sA}G^{\prime}\left( 0\right)\\ &>&\!K_{\varepsilon}\,-\,\frac{1}{\delta sA}C^{\prime}\left( \!C^{-1}\left( K_{\varepsilon}\right)\! \right) \left( R\,-\,aW\right)\! >\!0 \end{array} $$
(A.18)

(remember \(C^{\prime }<0\) and Ra W > 0). □

1.1.3 A.3 The Local Saddle Point Property

Let us return to the systems (CTR1) and (DYN1) and set μ g = 0, and μ r = 0. Since μ W >0 at the steady state, we can choose a neighborhood around the steady state such that μ W (t)>0 and therefore set w r (t) = W. In this case, equation (G W 1) becomes:

$$\begin{array}{@{}rcl@{}} &&{}\phi_{2}\left( w_{g}(t),h(t),\lambda(t)\right) =0, \end{array} $$
(A.19)
$$\begin{array}{@{}rcl@{}} &&{}P\left( w_{g}(t)+\left( 1-\varepsilon\right) W\right) -C\left( h(t)\right)\\ &&{}-\!\frac{a}{sA}\left( \lambda(t)\,+\,G^{\prime}\left( \frac{1} {sA}\left( \,-\,R_{\rho}\,+\,aw_{g}(t)\,+\,bW\right) \right) \right) \!\,=\,0. \end{array} $$
(A.20)

Moreover, \(\partial _{w_{g}}\phi _{2}=P^{\prime }-\left (\frac {a}{sA}\right )^{2}G"<0\) by our assumptions. We can therefore apply the implicit function theorem around the steady state and build \(w_{g}(t)=\phi _{3}\left (h(t),\lambda (t)\right ) >0\). We even know that:

$$ \partial_{h}\phi_{3}\,=\,\frac{C^{\prime}}{P^{\prime}-\left( \frac{a} {sA}\right)^{2}G\text{"}}\!>\!0\text{ and }\partial_{\lambda}\phi_{3}\,=\,\frac{\frac {a}{sA}}{P^{\prime}-\left( \frac{a}{sA}\right)^{2}G\text{"}}\!<\!0. $$
(A.21)

It follows that the dynamics of the system is locally given by:

$$ \left\{ \begin{array}{l} \dot{h}(t)=\frac{1}{sA}\left( R_{\rho}-a\phi_{3}\left( h(t),\lambda (t)\right) -bW\right), \\ \dot{\lambda}(t)=\delta\lambda(t)+C^{\prime}\left( h(t)\right) \phi_{3}\left( h(t),\lambda(t)\right). \end{array} \right. $$
(A.22)

It remains to verify that the Jacobian J of this two dimensional system has a positive trace T r(J) and a negative determinant \(\det (J)\). By computation, we obtain:

$$ J=\left[ \begin{array}{cc} -\frac{\frac{a}{sA}C^{\prime}}{P^{\prime}-\left( \frac{a}{sA}\right)^{2}G\text{"}} & -\frac{\left( \frac{a}{sA}\right)^{2}}{P^{\prime}-\left( \frac{a}{sA}\right)^{2}G\text{"}}\\ C\text{"}\cdot\phi_{3}+\frac{\left( C^{\prime}\right)^{2}}{P^{\prime}-\left( \frac{a}{sA}\right)^{2}G\text{"}} & \delta+\frac{\frac{a}{sA}C^{\prime} }{P^{\prime}-\left( \frac{a}{sA}\right)^{2}G\text{"}} \end{array} \right]. $$
(A.23)

We can therefore say, under our assumptions, that :

$$ Tr(J)\,=\,\delta>0\text{ and }\det(J)=\frac{-\delta\frac{a}{sA}C^{\prime}+\left( \frac{a}{sA}\right)^{2}C\text{"}\phi_{3}}{P^{\prime}-\left( \frac{a}{sA}\right)^{2}G\text{"}}<0. $$
(A.24)

Appendix B: The Study of the Threshold

Let us introduce the system:

$$\begin{array}{@{}rcl@{}} && \left\{ \begin{array}{l} \phi_{4}(\rho,h;R,\beta,{\Gamma},s,A)=0\\ \phi_{5}(\rho,h;W,R,\varepsilon,\beta,{\Gamma},s,A)=0 \end{array} \right. \end{array} $$
(B.1)
$$\begin{array}{@{}rcl@{}} && \Leftrightarrow\left\{ \begin{array}{l} P\left( \frac{1}{a}R_{\rho}\right) \,-\,C\left( h\right) \,+\,\frac{1}{\delta sA}C^{\prime}\left( h\right) R_{\rho}\,-\,\frac{a}{sA}{\Gamma}\,=\,0\\ P\left( \frac{1}{a}\left( R_{\rho}\,+\,(\rho\,-\,\varepsilon)W\right) \right) \,-\,C\left( h\right) \\{\kern18pt} \,+\,\frac{1}{\delta sA}C^{\prime}\left( h\right)\left( R_{\rho}\,-\,bW\right) \,-\,\frac{a}{sA}{\Gamma}\,=\,0 \end{array} \right. \end{array} $$
(B.2)

with \({\Gamma }=G^{\prime }\left (0\right ) \). The first equation gives us the stationary water table without RWH while the second includes this option. So if we solves this system in h and ρ, we obtain the threshold value, \(\bar {\rho }\) for which the stationary water table h is the same without or with rainwater harvesting. Moreover, this threshold can then be linked to the different parameters \(\left (W,R,\varepsilon ,\beta ,{\Gamma }\right ) \).

1.1 B.1 Existence of a Threshold

Let us observe that for any admissible \(\left (W,R,\varepsilon ,\beta ,{\Gamma },s,A\right ) \), ∀{i = 4,5}, (i) h ϕ i >0 since \(C^{\prime }<0\) and C”≥ 0, (ii) \(\lim _{h\rightarrow 0}\phi _{i} =-\infty \) since \(\lim _{h\rightarrow 0}C(h)=-\infty \) and (iii) \(\lim _{h\rightarrow \bar {h}}\phi _{i}>0\) (apply the same argument as in the proof of Proposition 10). We can therefore, by the implicit function theorem, define two continuous functions \(h_{g}\left (\rho \right ) \) and \(h_{r}\left (\rho \right ) \) which respectively solve in h, ϕ 4(ρ, h;R, β,Γ)=0 and ϕ 5(ρ, h;W, R, ε, β,Γ)=0. It remains now to study \(\left (h_{g}\left (\rho \right ) -h_{r}\left (\rho \right ) \right ) \) since the threshold solves \(h_{g}\left (\bar {\rho }\right ) -h_{r}\left (\bar {\rho }\right ) =0\).

Since \(\rho \in \left [ \varepsilon ,1-\beta \left (1-\varepsilon \right ) \right ] \), let us first observe that \(\left (h_{g}\left (\rho \right ) -h_{r}\left (\rho \right ) \right )_{\rho =\varepsilon }>0\). To verify this point, let us observe that, for ρ = ε, h g and h r respectively solve:

$$ \left\{ \begin{array}{l} P\left( \frac{1-\varepsilon}{1-\beta}R\right) \,-\,C\left( h_{g}\right) \,+\,\frac{1-\varepsilon}{\delta sA}C^{\prime}\left( h_{g}\right) R\,-\,\frac {(1-\beta)}{sA}{\Gamma}\,=\,0,\\ P\left( \frac{1-\varepsilon}{1-\beta}R\right) \,-\,C\left( h_{r}\right) \,+\,\frac{1-\varepsilon}{\delta sA}C^{\prime}\left( h_{r}\right) \left( R\,-\,\left( 1\,-\,\beta\right) W\right) \,-\,\frac{(1-\beta)}{sA}{\Gamma}\,=\,0. \end{array} \right. $$
(B.3)

This implies:

$$\begin{array}{@{}rcl@{}} && -C\left( h_{g}\right) \,+\,\frac{(1\,-\,\varepsilon)R}{\delta sA}C^{\prime }\left( h_{g}\right) \,=\,-C\left( h_{r}\right) \,+\,\frac{1\,-\,\varepsilon}{\delta sA}C^{\prime}\left( h_{r}\right) \left( R\,-\,\left( 1\,-\,\beta\right) W\right) \\ && \Leftrightarrow\left[ \!-C\left( h_{g}\right) \,+\,\frac{(1\,-\,\varepsilon )R}{\delta sA}C^{\prime}\left( h_{g}\right) \right] \,-\,\left[ -C\left( h_{r}\right) \,+\,\frac{(1\,-\,\varepsilon)R}{\delta sA}C^{\prime}\left( h_{r}\right) \right]\\ &&=-\frac{(1\,-\,\varepsilon)(1-\beta)W}{\delta sA} C^{\prime}\left( h_{r}\right). \end{array} $$
(B.4)

It is straightforward that the right-hand side of Eq. (B.4) is positive, so that:

$$ \left[ -C\left( h_{g}\right) +\frac{(1-\varepsilon)R}{\delta sA}C^{\prime }\left( h_{g}\right) \right] \!>\!\left[ -C\left( h_{r}\right) +\frac{(1-\varepsilon)R}{\delta sA}C^{\prime}\left( h_{r}\right) \right]. $$
(B.5)

Finally, since \(C^{\prime }<0\) and C ≥ 0, we deduce that \(h_{g}\left (\varepsilon \right ) >h_{r}\left (\varepsilon \right ) \).

Second, observe that \(\left (h_{g}\left (\rho \right ) -h_{r}\left (\rho \right ) \right )_{\rho =1-\beta \left (1-\varepsilon \right ) }<0.\) In this case, the quantities h g and h r solve:

$$ \left\{ \begin{array}{l} P\left( \frac{\beta\left( 1-\varepsilon\right) }{1-\beta}R\right) \,-\,C\left( h_{g}\right) \,+\,\frac{\beta\left( 1-\varepsilon\right) }{\delta sA}C^{\prime}\left( h_{g}\right) R-\frac{(1-\beta)}{sA}{\Gamma}=0,\\ P\left( \frac{\beta\left( 1-\varepsilon\right) }{1-\beta}R+\left( 1-\varepsilon\right) W\right) -C\left( h_{r}\right) +\frac{\beta\left( 1-\varepsilon\right) }{\delta sA}C^{\prime}\left( h_{r}\right) R-\frac{(1-\beta)}{sA}{\Gamma}=0. \end{array} \right. $$
(B.6)

Since \(P\left (\frac {\beta \left (1-\varepsilon \right ) }{1-\beta }R\right ) >P\left (\frac {\beta \left (1-\varepsilon \right ) }{1-\beta }R+\left (1-\varepsilon \right ) W\right ) \) (remember that \(P^{\prime }<0\)), we can write:

$$ C\left( h_{g}\right) -\frac{\beta\left( 1-\varepsilon\right) }{\delta sA}C^{\prime}\left( h_{g}\right) R>C\left( h_{r}\right) -\frac {\beta\left( 1-\varepsilon\right) }{\delta sA}C^{\prime}\left( h_{r}\right) R. $$
(B.7)

Since \(C\left (h\right ) -\frac {\beta \left (1-\varepsilon \right ) }{\delta sA}C^{\prime }\left (h\right ) R\) is decreasing in h, we conclude that \(h_{g}\left (1-\beta \left (1-\varepsilon \right ) \right ) <h_{r}\left (1-\beta \left (1-\varepsilon \right ) \right ) \).

Finally by continuity, we can affirm that there exists at least one \(\bar {\rho }\in \left [ \varepsilon ,1-\beta \left (1-\varepsilon \right ) \right ] \) such that \(h_{g}\left (\bar {\rho }\right ) -h_{r}\left (\bar {\rho }\right ) =0\).

1.2 B.2 Uniqueness of the Threshold

Since this threshold and the associated water table are also obtained as a solution to system (B.1) for a given set \(\left (W,R,\varepsilon ,\beta ,{\Gamma }\right ) \) of parameters, we can use the Gale-Nikaido theorem (see Gale-Nikaido [11] or Mas-Colell [22]) which states that if every principal minor of \(\partial _{\rho ,h}\left (\phi _{i=4,5}\right ) \) is positive and the domain \(K=\left [ 0,\bar {h}\right ] \times \left [ 0,1\right ] \) of the function is a rectangle, the solution, if it exists, is unique. Let us verify this point.

$$\begin{array}{@{}rcl@{}} &&\partial_{\rho,h}\left( \phi_{i=4,5}\right) =\left[ \begin{array}{cc} -R\left( \frac{1}{a}P_{g}^{\prime}+\frac{1}{\delta sA}C^{\prime}\right) & -C^{\prime}+\frac{R_{\rho}}{\delta sA}C\text{"}\\ -(R-W)\left( \frac{1}{a}P_{r}^{\prime}+\frac{1}{\delta sA}C^{\prime}\right) & -C^{\prime}+\frac{R_{\rho}-bW}{\delta sA}C\text{"} \end{array} \right]\\ &&\text{ with }\left( \begin{array}{l} P_{g}^{\prime}\\ P_{r}^{\prime} \end{array} \right) =\left( \begin{array} [c]{l} P^{\prime}\left( \frac{1}{a}R_{\rho}\right) \\ P^{\prime}\left( \frac{1}{a}\left( R_{\rho}+(\rho-\varepsilon)W\right) \right) \end{array} \right). \end{array} $$

Concerning the principal minors of order 1, we notice that:

  1. (i)

    \(-R\left (\frac {1}{a}P_{g}^{\prime }+\frac {1}{\delta sA} C^{\prime }\right ) >0\) since \(C^{\prime }<0\) and \(P^{\prime }<0\);

  2. (ii)

    \(-C^{\prime }+\frac {R_{\rho }-bW}{\delta sA}C">0\) since \(C^{\prime }<0\), C ≥ 0 and R ρ b W = (1−ρ)(RW) + β(1−ε)W > 0;

It therefore remains to compute the determinant of \(\partial _{\rho ,h}\left (\phi _{i=4,5}\right ) \). This quantity is given by:

$$\begin{array}{@{}rcl@{}} \det\left( \partial_{\rho,h}\left( \phi_{i=4,5}\right) \right) & =&\left( \frac{1}{a}P_{g}^{\prime}+\frac{1}{\delta sA}C^{\prime}\right) \left( RC^{\prime}-\frac{(1-\rho)\left( R-W\right) R}{\delta sA} C"\right.\\&&\left.-\frac{\beta(1-\varepsilon)RW}{\delta sA}C"\right) \\ & +&\left( \frac{1}{a}P_{r}^{\prime}+\frac{1}{\delta sA}C^{\prime}\right) \left( \vphantom{\frac{(1-\rho)\left( R-W\right) R}{\delta sA}}\!-RC^{\prime}\right.\\&&\left.+\frac{(1-\rho)\left( R-W\right) R}{\delta sA}C"+WC^{\prime}\right) \\ & =&\underset{>0}{\underbrace{\frac{R}{a}\left( C^{\prime}-\frac {(1-\rho)\left( R-W\right) }{\delta sA}C"\right) \left( P_{g}^{\prime }-P_{r}^{\prime}\right) }}\\&&-\underset{<0}{\underbrace{\frac{\beta (1-\varepsilon)RW}{\delta sA}C"\left( \frac{1}{a}P_{g}^{\prime}+\frac {1}{\delta sA}C^{\prime}\right) }}\\&&+\underset{>0}{\underbrace{WC^{\prime }\left( \frac{1}{a}P_{r}^{\prime}+\frac{1}{\delta sA}C^{\prime}\right) }} \end{array} $$
$$ {\noindent}\text{hence }\det\left( \partial_{\rho,h}\left( \phi_{i=4,5}\right) \right) >0 $$
(B.8)

since \(C^{\prime },P_{g}^{\prime },P_{r}^{\prime }<0,C"\geq 0\) and because P > 0, \(P^{\prime }\left (\frac {1}{a}R_{\rho }\right ) <P^{\prime }\left (\frac {1}{a}\left (R_{\rho }+(\rho -\varepsilon )W\right ) \right ) \), i.e. \(P_{g}^{\prime }-P_{r}^{\prime }<0\).

1.3 B.3 Comparative Statics

Let us denote by θ one of the following parameters {W, R, β, ε,Γ, s, A} and let us compute \(\frac {\partial \rho } {\partial \theta }\). It we differentiate system (B.1) with respect to \(\left (h,\rho ,\theta \right ) \) and solve the system, we know by the Cramer rule that:

$$ \frac{\partial\rho}{\partial\theta}=\det\left( \begin{array}{cc} -\partial_{\theta}\phi_{4} & \partial_{h}\phi_{4}\\ -\partial_{\theta}\phi_{5} & \partial_{h}\phi_{5} \end{array} \right) \left/ \det\left( \begin{array}{cc} \partial_{\rho}\phi_{4} & \partial_{h}\phi_{4}\\ \partial_{\rho}\phi_{5} & \partial_{h}\phi_{5} \end{array} \right) \right. =\frac{N}{D}. $$
(B.9)

From Eq. B.8, we know that the denominator D is positive. It follows that the sign of \(\frac {\partial \rho }{\partial \theta }\) is simply given by its numerator N. Moreover, a simple exercise of computation shows that :

$$\begin{array}{@{}rcl@{}} \partial_{h}\phi_{4}&=&-C^{\prime}(h)+\frac{1}{\delta sA}C^{\prime\prime}(h)R_{\rho}>0\text{ and }\partial_{h}\phi_{5}=-C^{\prime}(h)\\&&+\frac{1}{\delta sA}C^{\prime\prime}(h)\left( R_{\rho}-bW\right) >0 \end{array} $$
(B.10)

and

(B.11)

we can therefore identify, after computation, the effects on the threshold of the following parameters:

  • (i) The storage capacity, \(\frac {\partial \rho }{\partial W}\).

    $$\begin{array}{@{}rcl@{}} &&{}sign~\left( \frac{\partial\rho}{\partial W}\right) =sign~\left( \left( \frac{\rho-\varepsilon}{a}P_{r}^{\prime}-\frac{b}{\delta}C^{\prime}\right) \underset{>0\text{ since }C^{\prime}<0\text{, }C">0}{\underbrace{\left( -C^{\prime}+\frac{R_{\rho}}{\delta sA}C"\right) }}\right)\\&& {}=sign~\left( \frac{\rho-\varepsilon}{a}P_{r}^{\prime}-\frac{b}{\delta sA}C^{\prime }\right). \end{array} $$
    (B.12)

    Let us now observe that the computation of the difference of the two equations (see Eq. (B.1)) which define the threshold gives:

    $$ P\left( \frac{1}{a}R_{\rho}\right) -P\left( \frac{1}{a}\left( R_{\rho }+(\rho-\varepsilon)W\right) \right) +\frac{bW}{\delta sA}C^{\prime}=0 $$
    (B.13)

    and the convexity of the inverse demand gives:

    $$ P\left( \frac{1}{a}R_{\rho}\right) -P\left( \frac{1}{a}\left( R_{\rho }+(\rho-\varepsilon)W\right) \right) >-\frac{\left( \rho-\varepsilon \right) W}{a}P_{r}^{\prime}. $$
    (B.14)

    These two last equations immediately show that \(\left (\frac {\left (\rho -\varepsilon \right ) }{a}P_{r}^{\prime }-\frac {b}{\delta sA}C^{\prime }\right ) >0\) hence that \(\frac {\partial \rho }{\partial W}>0.\)

  • (ii) The evaporation rate, \( \frac {\partial \rho }{\partial \varepsilon }\).

    $$ sign\left( \frac{\partial\rho}{\partial\varepsilon}\right) =sign\left( -W\left( \frac{1}{a}P_{r}^{\prime}+\frac{\beta}{\delta}C^{\prime}\right) \left( -C^{\prime}+\frac{R_{\rho}}{\delta}C"\right) \right) >0 $$
    (B.15)

    since \(P_{r}^{\prime }<0\), \(C^{\prime }<0\) and C > 0.

  • (iii) The marginal ecosystem damage, \(\frac {\partial \rho }{\partial {\Gamma }}\).

    $$ sign\left( \frac{\partial\rho}{\partial{\Gamma}}\right) =sign\left( -\frac{abW}{\delta\left( sA\right)^{2}}C"\right) \leq0. $$
    (B.16)
  • (iv) The recharge, \(\frac {\partial \rho }{\partial R}\). Since \(\partial _{h}\phi _{5}=\partial _{h}\phi _{4}+\frac {bW}{\delta sA}C^{\prime \prime }(h)\) and \(\left (\frac {1-\rho }{a}\right ) >0\), a routine computation gives:

    $$ sign\left( \frac{\partial\rho}{\partial R}\right) =sign\left( \underset{>0}{\underbrace{\partial_{h}\phi_{4}}}\underset{\geq0\text{ (since }P"\geq0\text{)}}{\underbrace{\left( -P_{g}^{\prime}+P_{r}^{\prime}\right) }}+\underset{\geq0}{\underbrace{\frac{bW}{\delta sA}C^{\prime\prime}} }\underset{<0}{\underbrace{\left( P_{g}^{\prime}+\frac{a}{\delta sA}C^{\prime}\right) }}\right). $$
    (B.17)

    This quantity is clearly ambiguous. For instance if the demand is linear, we have \(P_{r}^{\prime }-P_{g}^{\prime }=0\) and \(\frac {\partial \rho }{\partial R} <0\). But if the unit pumping cost is linear in h so that C = 0, we observe \(\frac {\partial \rho }{\partial R}>0\). Finally in the Gisser-Sánchez case (i.e., C = 0 and P linear), it is immediate that \(\frac {\partial \rho }{\partial R}=0.\)

  • (v) The return flow, \(\frac {\partial \rho }{\partial \beta }\).

    $$\begin{array}{@{}rcl@{}} &&sign\left( \frac{\partial\rho}{\partial\beta}\right) =sign\left( \partial_{h}\phi_{4}\left[ \frac{R_{\rho}}{a^{2}}\left( -P_{g}^{\prime }+P_{r}^{\prime}\right)\right.\right.\\ &&\left.+\frac{(\rho-\varepsilon)W}{a^{2}}P_{r}^{\prime }+\frac{(1-\varepsilon)W}{\delta sA}C^{\prime}\right]\\&&\left. +\frac{bW}{\delta sA}\left( \frac{R_{\rho}}{a^{2}}P_{g}^{\prime}+{\Gamma}\right) C^{\prime \prime}\right). \end{array} $$
    (B.18)

    This quantity is again ambiguous. To illustrate this point let us assume that C = 0 so that \(C^{\prime }=-c_{0}\) a constant with c 0>0. If we add that P(w) is linear (the Gisser-Sánchez case) then \(sign\left (\frac {\partial \rho }{\partial \beta }\right ) =sign\left (\frac {(\rho -\varepsilon )W}{a^{2}}P_{r}^{\prime }-\frac {(1-\varepsilon )W}{\delta sA}c_{0}\right ) <0\). If we now introduce an iso-elastic demand P(w) = w α with a > 1, then

    $$\begin{array}{@{}rcl@{}} &&sign\left( \frac{\partial\rho}{\partial\beta}\right) =sign\left( \alpha\underset{\equiv d>0}{\underbrace{\left( \left( \frac{R_{\rho}} {a}\right)^{-\alpha}-\left( \frac{R_{\rho}+(\rho-\varepsilon)W}{a}\right)^{-\alpha}\right) }}\right.\\&&{\kern90pt}\left.-\underset{\equiv n>0}{\underbrace{a\frac{(1-\varepsilon )W}{\delta sA}c_{0}}}\vphantom{\underset{\equiv d>0}{\underbrace{\left( \left( \frac{R_{\rho}} {a}\right)^{-\alpha}-\left( \frac{R_{\rho}+(\rho-\varepsilon)W}{a}\right)^{-\alpha}\right) }}}\right) \end{array} $$
    (B.19)

    so if \(\alpha >\max \left \{ \frac {n}{d},1\right \} \) then \(\frac {\partial \rho }{\partial \beta }>0\).

  • (vi) The storativity coefficient, \(\frac {\partial \rho }{\partial s}\). A routine computation gives:

    $$ sign\left( \frac{\partial\rho}{\partial s}\right) =sign\left( \frac{\Gamma}{s}C"-(C^{\prime})^{2}\right). $$
    (B.20)

    If the marginal damage of the aquifer is not considered, i.e. Γ=0, or if marginal pumping cost is linear in h, we have\(\frac {\partial \rho }{\partial s}<0\). Otherwise, this quantity may be unsigned especially if the marginal environmental damage Γ is high.

  • (vii) The area of the aquifer, \(\frac {\partial \rho }{\partial A}\). Since A and s work in the same way on the threshold, we can say that \(sign\left (\frac {\partial \rho }{\partial A}\right ) =sign\left (\frac {\Gamma }{A}C"-(C^{\prime })^{2}\right ) \) and we can apply the same comments as in (vi).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stahn, H., Tomini, A. On the Environmental Efficiency of Water Storage: the Case of a Conjunctive use of Ground and Rainwater. Environ Model Assess 21, 691–706 (2016). https://doi.org/10.1007/s10666-016-9509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9509-3

Keywords

Navigation