Advertisement

Environmental Modeling & Assessment

, Volume 18, Issue 1, pp 73–83 | Cite as

Environmental and Economic Criteria in Ranking of Copper Concentrates

  • Ivan JovanovićEmail author
  • Predrag Stanimirović
  • Živan Živković
Article

Abstract

Influence of the economic criterion, called Profit, on the ranking of copper concentrates is investigated. Values of the criterion, which correspond to alternatives, are derived as earning values obtained by the exploitation of individual concentrates. Various scenarios with respect to the weight w 14, corresponding to the additional economical criterion, are defined and solved. A discrete set of results is generated, applying DECISION LAB software implementation of the PROMETHEE-GAIA methodology. Interpolating these results, we derived continuous interpolation functions which compute necessary quantities of concentrates for each real value of w 14 within the interval [0, 100].

Keywords

Optimization of batch Blending problem Copper concentrate DECISION LAB LINDO 

References

  1. 1.
    Al-Rashdan, D., Al-Kloub, B., Dean, A., & Al-Shemmeri, T. (1999). Environmental impact assessment and ranking the environmental projects in Jordan. European Journal of Operational Research, 118, 30–45.CrossRefGoogle Scholar
  2. 2.
    Al-Shiekh Khalil, W., Goonetilleke, A., Kokot, S., & Carroll, S. (2004). Use of chemometrics methods and multicriteria decision-making for site selection for sustainable on-site sewage effluent disposal. Analytica Chimica Acta, 506, 41–56.CrossRefGoogle Scholar
  3. 3.
    Aznar, J. C., Richer-Lafleche, M., & Cluis, D. (2008). Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Quebec. Environmental Pollution, 156(1), 76–81.CrossRefGoogle Scholar
  4. 4.
    Biswas, A. K., & Devenport, W. G. (2002). Extractive metallurgy of copper. New York: Pergamon.Google Scholar
  5. 5.
    Brans, J. P, & Mareschal, B. (1992). Promethee-V—MCMD problems with segmentation constraints. Information Systems and Operations Research, 30(2), 85–96.Google Scholar
  6. 6.
    Dimitrijević, M., Kostov, A., Tasić, V., & Milosević, N. (2009). Influence of pyrometallurgical copper production on the environment. Journal of Hazardous Materials, 164, 892–899.CrossRefGoogle Scholar
  7. 7.
    Djordjević, P., Mihajlović, I., & Živković, Ž. (2010). Comparasion of linear and nonlinear statistics metods applied in industrial process modeling procedure. Serbian Journal of Management, 5(2), 189–198.Google Scholar
  8. 8.
    Djurić, I., Djordjević, P., Mihajlović, I., Nikolic, Dj., & Živkovic, Ž. (2010). Prediction of Al2O3 leaching recovery in the Bayer process using statistical multilinear regression analysis. Journal Of Mining And Metallurgy, Section B: Metallurgy, 46(2)B, 161–169.CrossRefGoogle Scholar
  9. 9.
    EU, 1999/30/CE (1999). Council directive relating to limit values for sulphur dioxide, nitrogen dioxide and oxide of nitrogen, particulate matter and lead in ambient air. The Council of the European Union.Google Scholar
  10. 10.
    EU, 2004/107/CE (2004). Council directive relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. The Council of the European Union.Google Scholar
  11. 11.
    Faitondjiev, L., Stanislavova, L., Tchuldjian, H., Gupta, S. K., & Schulin, R. (2000). Toxic elements in soils of the region of Kremikovtzi. Soil Science, Agrochemistry and Ecology, 35(5), 3–9.Google Scholar
  12. 12.
    Filippou, D., German, P. St., & Grammatikopolus T. (2007). Recovery of metal values from copper–arsenic minerals and other related resources. Mineral Processing & Extractive Metallurgy Review, 28, 247–298.CrossRefGoogle Scholar
  13. 13.
    Franzin, W. G., McFarlane, G. A., & Lutz, A. (1979). Atmospheric fallout in the vicinity of a bade metal smelter at Flin Flon Manitoba, Canada. Environmental Science & Technology, 13(12), 1513–1522.CrossRefGoogle Scholar
  14. 14.
    Gidhagen, L., Kahelin, H., Schmidt-Thome, P., & Johansson, C. (2002). Anthropogenic and natural levels of arsenic in PM10 in Central and Northern Chile. Atmospheric Environment, 36(23), 3803–3817.CrossRefGoogle Scholar
  15. 15.
    Guo, B. H., & Yen, W. T. (2005). Selective flotation of enargite by electrochemical control. Minerals Engineering, 18(6), 605–612.CrossRefGoogle Scholar
  16. 16.
    Habachi, F. (2007). Copper metallurgy at the crossroads. Journal of Mining and Metallurgy Section B: Metallurgy, 43(1)B, 1–19.CrossRefGoogle Scholar
  17. 17.
    Hedberg, E., Gidhagen, L., & Johansson, C. (2005). Source contributions to PM10 and arsenic concentrations in central Chile using positive matrix factorization. Atmospheric Environment, 39(3), 549–561.CrossRefGoogle Scholar
  18. 18.
    King, G. M. (2007). The evolution of technology for extractive metallurgy over the last 50 years—Is the best yet to Come?. Journal of Metals, 59(2), 21–27.Google Scholar
  19. 19.
    Lim, Mc. C. H., Ayoko, G. A., & Morawska, L. (2005). Characterization of elemental and polycyclic aromatic hydrocarbon compositions of urban air in Brisbane. Atmospheric Environment, 39, 463–476.CrossRefGoogle Scholar
  20. 20.
    Lim, Mc. C. H., Ayoko, G. A., Morawska, L., Ristovski, Z. D., Jayaratne, E. R., & Kokot, S. (2006). A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol. Atmospheric Environment, 40, 3111–3122.CrossRefGoogle Scholar
  21. 21.
    Magaeva, S., Patronov, G., Lenchev, A., & Granchorov, I. (2000). Energy analysis of processing SO 2 containing gases in metallurgy into sulphuric acind and sulphur. Journal of Mining and Metallurgy, Section B: Metallurgy, 36(1–2)B, 77–92.Google Scholar
  22. 22.
    Moldovanska, N., Dimitrov, R., & Ladev, L. (2000). Kinetic study of CdS oxidation process in non-isothermal conditions. Journal of Mining and Metallurgy, Section B: Metallurgy, 36(1–2)B, 103–110.Google Scholar
  23. 23.
    Nikolić, Dj., Jovanović, I., Mihajlović, I., & Živković, Ž. (2009). Multi-criteria ranking of copper concentrates according to their quality—An element of environmental management in the vicinity of copper-smelting complex in Bor, Serbia. Journal of Environmental Management, 91, 509–515.CrossRefGoogle Scholar
  24. 24.
    Rousis, K., Moustakas, K., Malamis, S., Papadopoulos, A., & Loizidou, M. (2008). Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus. Waste Management, 28, 1941–1954.CrossRefGoogle Scholar
  25. 25.
    Štrbac, N., Živković, Ž., Živković, D., Grujičić, D., & Boyanov, B. (2001). Thermal analysis of oxidation process of antimony and gallium sulphides. Journal of Mining and Metallurgy, Section B: Metallurgy, 37(1–2)B, 49–56.Google Scholar
  26. 26.
    Visual Decision Inc. (2007). Getting started guide, Decision Lab 2000 (executive edition). Montreal, Quebec, Canada.Google Scholar
  27. 27.
    WHO—World Health Organization (2001). Air quality guidelines for Europe (2nd edition WHO regional publications). Copenhagen: Regional Office for Europe.Google Scholar
  28. 28.
    Wolfram, S. (2003). The MATHEMATICA book (5th ed.). Champaign: Wolfram Media/Cambridge University Press.Google Scholar
  29. 29.
    Živković, Ž., Mitevska, N., Mihajlović, I., Nikolić, Dj. (2009). The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates. Journal of Mining and Metallurgy, Section B: Metallurgy, 45(1)B, 23–34.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ivan Jovanović
    • 1
    Email author
  • Predrag Stanimirović
    • 2
  • Živan Živković
    • 1
  1. 1.Technical Faculty at BorUniversity of BelgradeBorSerbia
  2. 2.Faculty of Sciences and MathematicsUniversity of NišNišSerbia

Personalised recommendations