Skip to main content

Advertisement

Log in

Energy technology environment model with smart grid and robust nodal electricity prices

  • OR Modeling/Case Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper deals with the modeling of power flow in a transmission grid within the multi-sectoral multi-energy long-term regional energy model ETEM-SG. This extension of the model allows a better representation of demand response for flexible loads triggered by nodal marginal cost pricing. To keep the global model in the realm of linear programming one uses a linearized DC power flow model that represents the transmission grid with the main constraints on the power flowing through the different arcs of the electricity transmission network. Robust optimization is used to take into account the uncertainty on the capacity limits resulting from inter-regional transit. A numerical illustration is carried out for a data set corresponding roughly to the Leman Arc region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Usually the swing bus is numbered 1 for the load flow studies. This bus sets the angular reference for all the other buses. Since it is the angle difference between two voltage sources that dictates the real and reactive power flow between them, the particular angle of the swing bus is not important.

  2. In electrical engineering, susceptance (\({\mathbf {B}}\)) is the imaginary part of admittance. The inverse of admittance is impedance and the real part of admittance is conductance. In SI units, susceptance is measured in siemens.

  3. Expressed in $/MWh or CHF/MWh.

  4. The reader is referred to the RITES (ORDECSYS 2013) and TOU (ORDECSYS 2014) projects, which were supported by the Swiss Federal Office of Energy.

  5. For more details on the global energy system, the reader is referred to ORDECSYS (2013, 2014).

References

  • Andrey, C., Babonneau, F., & Haurie, A. (2015). Modélisation stochastique et robuste de l’atténuation et de l’adaptation dans un système énergétique régional. application à la région midi-pyrénées. Nature Science Société, 23(2), 133–149.

    Article  Google Scholar 

  • Babonneau, F., Caramanis, M., & Haurie, A. (2016). A linear programming model for power distribution with demand response and variable renewable energy. Applied Energy, 181, 83–95.

    Article  Google Scholar 

  • Babonneau, F., Caramanis, M., & Haurie, A. (2017). ETEM-SG: Optimizing regional smart energy system with power distribution constraints and options. Environmental Modelling and Assessment, 22(5), 411–430.

    Article  Google Scholar 

  • Babonneau, F., Haurie, A., Tarel, G. J., & Thénié, J. (2012). Assessing the future of renewable and smart grid technologies in regional energy systems. Swiss Journal of Economics and Statistics, 148(2), 229–273.

    Article  Google Scholar 

  • Babonneau, F., Kanudia, A., Labriet, M., Loulou, R., & Vial, J.-P. (2012). Energy security: A robust programming approach and application to european energy supply via tiam. Environmental Modeling and Assessment, 17(1), 19–37.

    Article  Google Scholar 

  • Babonneau, F., Klopfenstein, O., Ouorou, A., & Vial, J.-P. (2013). Robust capacity expansion solutions for telecommunication networks with uncertain demands. Network, 62(4), 255–272.

    Article  Google Scholar 

  • Babonneau, F., Vial, J.-P., & Apparigliato, R. (2010). Robust optimization for environmental and energy planning. In J. A. Filar & A. Haurie (Eds.), Uncertainty and environmental decision making. Berlin: Springer.

    Google Scholar 

  • Bacher, R. (1992). Power system models, objectives and constraints in optimal power flow calculations. In R. Bacher, K. Frauendorfer, & H. Glavitsch (Eds.), Optimization in planning and operation of electric power systems (pp. 217–264)., Lecture notes of the SVOR/ASRO tutorial Thun Berlin: Springer.

    Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23, 769–805.

    Article  Google Scholar 

  • Berger, C., Dubois, R., Haurie, A., Lessard, E., Loulou, R., & Waaub, J.-P. (1992). Canadian MARKAL: An advanced linear programming system for energy and environmental modelling. INFOR, 30(3), 222–239.

    Google Scholar 

  • El-Ghaoui, L., & Lebret, H. (1997). Robust solutions to least- square problems to uncertain data matrices. SIAM Journal of Matrix Analysis and Applications, 18, 1035–1064.

    Article  Google Scholar 

  • Fragnière, E., & Haurie, A. (1996). A stochastic programming model for energy/environment choices under uncertainty. International Journal Environment and Pollution, 6(4–6), 587–603.

    Google Scholar 

  • Loulou, R., & Labriet, M. (2008). ETSAP-TIAM: The times integrated assessment model part i: Model structure. Computational Management Science, 5(1), 7–40.

    Article  Google Scholar 

  • Office fédéral de l’énergie (OFEN). (2012). Die Energieperspektiven für die Schweiz bis 2050.

  • ORDECSYS. (2013). Réseaux intelligents de transport/transmission de l’électricité en suisse. Technical report, ORDECSYS Technical report.

  • ORDECSYS. (2014). Time of use (TOU) pricing: Adaptive and TOU pricing schemes for smart technology integration. Technical report, ORDECSYS Technical report.

  • Ruiz, P.A., Foster, J.M., Rudkevich, A., Caramanis, M. (2011) On fast transmission topology control heuristics. In Proceedings of 2011 IEEE power and energy society general meeting, Detroit, MI. IEEE, July 2011

  • Ruiz, P.A., Rudkevich, A., Caramanis, M.C., Goldis, E., Ntakou, E., Philbrick, R. (2012a). Reduced MIP formulation for transmission topology control. In 50th annual Allerton conference on communication, control, and computing, Monticello. USA University of Illinois at Urbana-Champaign

  • Ruiz, P. A., Foster, J. M., Rudkevich, A., & Caramanis, M. C. (2012). Tractable transmission topology control using sensitivity analysis. IEEE Transactions on Power Systems, 27, 1550–1559.

    Article  Google Scholar 

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21, 1154–1157.

    Article  Google Scholar 

  • Stiel, A. D. J. (2011). Modelling liberalised power markets. Master’s thesis. ETH Zürich, Centre for Energy Policy and Economics. September 2011

  • Weigt, H., & Schlecht, I. (2014). Swissmod a model of the Swiss electricity market. Technical report. WWZ-Discussion Paper.

Download references

Acknowledgements

This research is supported by the Qatar National Research Fund under Grant Agreement n\(^o\) NPRP10-0212-170447 and by Canadian IVADO programme (VORTEX Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Babonneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babonneau, F., Haurie, A. Energy technology environment model with smart grid and robust nodal electricity prices. Ann Oper Res 274, 101–117 (2019). https://doi.org/10.1007/s10479-018-2920-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2920-1

Keywords

Navigation