Advertisement

NORTA for portfolio credit risk

  • Mohamed A. Ayadi
  • Hatem Ben-Ameur
  • Nabil Channouf
  • Quang Khoi Tran
S.I.: Risk in Financial Economics
  • 45 Downloads

Abstract

We use NORTA (NORmal To Anything) to enhance normal credit-risk factor settings in modeling common risk factors and capturing contagion effects. NORTA extends the multivariate Normal distribution in that it enables the simulation of a random vector with arbitrary and known marginals and correlation structure. NORTA can be solved either by numerical integration (Cario and Nelson in Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix, Technical report, Department of Industrial Engineering and Management Sciences, Northwestern University, IL, 1997) or by Monte Carlo simulation (Ilich in Eur J Oper Res 192(2):468–478, 2009). The former approach, which is the most efficient, assumes that the marginals’ inverse cumulative functions are given, while the latter, which is more flexible but less efficient, does not. We show how to combine both approaches for higher flexibility and efficiency. We solve for NORTA and experiment with Normal, Student, and Asymmetric Exponential Power (AEP) distributions. We match NORTA models to Normal models with the same marginals’ first and second moments. Yet, differences in credit-risk measures can be highly significant. This supports NORTA as a viable alternative for credit-risk modeling and analysis.

Keywords

Finance Portfolio credit risk Factor models NORTA Numerical integration Monte Carlo simulation 

References

  1. Abate, J., & Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems, 10(1), 5–87.CrossRefGoogle Scholar
  2. Andersson, F., Mausser, H., Rosen, D., & Uryasev, S. (2001). Credit risk optimization with conditional value-at-risk criterion. Mathematical Programming, 89(2), 273–291.CrossRefGoogle Scholar
  3. Andersen, L., & Sidenius, J. (2004). Extensions to the Gaussian copula: Random recovery and random factor loadings. The Journal of Credit Risk, 1(1), 29–70.CrossRefGoogle Scholar
  4. Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.CrossRefGoogle Scholar
  5. Avramidis, A. N., Channouf, N., & L’Écuyer, P. (2009). Efficient correlation matching for fitting discrete multivariate distributions with arbitrary marginals and normal-copula dependence. INFORMS Journal on Computing, 21(1), 88–106.CrossRefGoogle Scholar
  6. Barbiero, A., & Ferrari, P. A. (2015). Simulation of correlated Poisson variables. Applied Stochastic Models in Business and Industry, 31(5), 669–680.CrossRefGoogle Scholar
  7. Bassamboo, A., Juneja, S., & Zeevi, A. (2008). Portfolio credit risk with extremal dependence: Asymptotic analysis and efficient simulation. Operations Research, 56(3), 593–606.CrossRefGoogle Scholar
  8. Berntsen, J., Espelid, T. O., & Genz, A. (1991). An adaptive algorithm for the approximate calculation of multiple integrals. ACM Transactions on Mathematical Software (TOMS), 17(4), 437–451.CrossRefGoogle Scholar
  9. Biller, B., & Nelson, B. L. (2003). Modeling and generating multivariate time-series input processes using a vector autoregressive technique. ACM Transactions on Modeling and Computer Simulation (TOMACS), 13(3), 211–237.CrossRefGoogle Scholar
  10. Brigo, D. (2002). A note on correlation and rank reduction. Technical Report, Product and Business Development Group: Banca IMI, Milano, Italy.Google Scholar
  11. Cario, M. C., & Nelson, B. L. (1997). Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Technical Report, Department of Industrial Engineering and Management Sciences, Northwestern University, IL.Google Scholar
  12. Cario, M. C., & Nelson, B. L. (1998). Numerical methods for fitting and simulating autoregressive-to-anything processes. INFORMS Journal on Computing, 10(1), 72–81.CrossRefGoogle Scholar
  13. Chan, J. C., & Kroese, D. P. (2010). Efficient estimation of large portfolio loss probabilities in t-copula models. European Journal of Operational Research, 205(2), 361–367.CrossRefGoogle Scholar
  14. Chan, J. C., & Kroese, D. P. (2011). Rare-event probability estimation with conditional Monte Carlo. Annals of Operations Research, 189(1), 43–61.CrossRefGoogle Scholar
  15. Channouf, N., & L’Écuyer, P. (2009). Fitting a Normal copula for a multivariate distribution with both discrete and continuous marginals. In Proceedings of the 2009 winter simulation conference (Vol. 41, pp. 352–358).Google Scholar
  16. Channouf, N., & L’Écuyer, P. (2012). A Normal copula model for the arrival process in a call center. International Transactions in Operational Research, 19(6), 771–787.CrossRefGoogle Scholar
  17. Davis, M., & Lo, V. (2001). Infectious defaults. Quantitative Finance, 1(4), 382–387.CrossRefGoogle Scholar
  18. Dunkel, J., & Weber, S. (2007). Efficient Monte Carlo methods for convex risk measures in portfolio credit risk models. In Proceedings of the 2007 winter simulation conference (Vol. 39, pp. 958–966).Google Scholar
  19. Egloff, D., Leippold, M., Joehri, S., & Dalbert, C. (2005). Optimal importance sampling for credit portfolios with a stochastic approximation. Working Paper, University of Zurich.Google Scholar
  20. Egloff, D., Leippold, M., & Vanini, P. (2007). A simple model of credit contagion. Journal of Banking & Finance, 31(8), 2475–2492.CrossRefGoogle Scholar
  21. Frey, R., & McNeil, A. J. (2003). Dependent defaults in models of portfolio credit risk. The Journal of Risk, 6(1), 59–92.CrossRefGoogle Scholar
  22. Fu, M. C., Hong, L. J., & Hu, J. Q. (2009). Conditional Monte Carlo estimation of quantile sensitivities. Management Science, 55(12), 2019–2027.CrossRefGoogle Scholar
  23. Genz, A. (2004). Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing, 14(3), 251–260.CrossRefGoogle Scholar
  24. Genz, A. C., & Malik, A. A. (1980). Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region. Journal of Computational and Applied Mathematics, 6(4), 295–302.CrossRefGoogle Scholar
  25. Gerald, C. F., & Weatley, P. O. (1999). Applied numerical analysis (6th ed.). Reading, MA: Addison-Wesley.Google Scholar
  26. Ghosh, S., & Henderson, S. G. (2002). Chessboard distributions and random vectors with specified marginals and covariance matrix. Operations Research, 50(5), 820–834.CrossRefGoogle Scholar
  27. Ghosh, S., & Henderson, S. G. (2003). Behavior of the NORTA method for correlated random vector generation as the dimension increases. ACM Transactions on Modeling and Computer Simulation (TOMACS), 13(3), 276–294.CrossRefGoogle Scholar
  28. Glasserman, P. (2004). Tail approximations for portfolio credit risk. The Journal of Derivatives, 12(2), 24–42.CrossRefGoogle Scholar
  29. Glasserman, P. (2006). Measuring marginal risk contributions in credit portfolios. Journal of Computational Finance, 9(2), 1–41.CrossRefGoogle Scholar
  30. Glasserman, P., Heidelberger, P., & Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, 12(3), 239–269.CrossRefGoogle Scholar
  31. Glasserman, P., Kang, W., & Shahabuddin, P. (2007). Large deviations in multifactor portfolio credit risk. Mathematical Finance, 17(3), 345–379.CrossRefGoogle Scholar
  32. Glasserman, P., Kang, W., & Shahabuddin, P. (2008). Fast simulation of multifactor portfolio credit risk. Operations Research, 56(5), 1200–1217.CrossRefGoogle Scholar
  33. Glasserman, P., & Li, J. (2005). Importance sampling for portfolio credit risk. Management Science, 51(11), 1643–1656.CrossRefGoogle Scholar
  34. Grundke, P. (2009). Importance sampling for integrated market and credit portfolio models. European Journal of Operational Research, 194(1), 206–226.CrossRefGoogle Scholar
  35. Hamerle, A., & Rösch, D. (2005). Misspecified copulas in credit risk models: How good is Gaussian? The Journal of Risk, 8(1), 41–58.CrossRefGoogle Scholar
  36. He, X., & Gong, P. (2009). Measuring the coupled risks: A copula-based CVaR model. Journal of Computational and Applied Mathematics, 223(2), 1066–1080.CrossRefGoogle Scholar
  37. Higham, N. J. (2002). Computing the nearest correlation matrix—A problem from finance. IMA Journal of Numerical Analysis, 22(3), 329–343.CrossRefGoogle Scholar
  38. Hong, L. J., Hu, Z., & Liu, G. (2014). Monte Carlo methods for value-at-risk and conditional value-at-risk: A review. ACM Transactions on Modeling and Computer Simulation (TOMACS), 24(4), 1–37.Google Scholar
  39. Ilich, N. (2009). A matching algorithm for generation of statistically dependent random variables with arbitrary marginals. European Journal of Operational Research, 192(2), 468–478.CrossRefGoogle Scholar
  40. Jiménez, G., & Mencía, J. (2009). Modelling the distribution of credit losses with observable and latent factors. Journal of Empirical Finance, 16(2), 235–253.CrossRefGoogle Scholar
  41. Kang, W., & Shahabuddin, P. (2005). Fast simulation for multifactor portfolio credit risk in the T-copula model. In Proceedings of the 2005 winter simulation conference (Vol. 37, pp. 1859–1868).Google Scholar
  42. Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2008). Loss models: From data to decisions (3rd ed.). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  43. Li, S. T., & Hammond, J. L. (1975). Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients. IEEE Transactions on Systems, Man, and Cybernetics, 5(5), 557–561.CrossRefGoogle Scholar
  44. Liu, G. (2015). Simulating risk contributions of credit portfolios. Operations Research, 63(1), 104–121.CrossRefGoogle Scholar
  45. Lucas, A., Klaassen, P., Spreij, P., & Straetmans, S. (2001). An analytic approach to credit risk of large corporate bond and loan portfolios. Journal of Banking & Finance, 25(9), 1635–1664.CrossRefGoogle Scholar
  46. Mansini, R., Ogryczak, W., & Grazia Speranza, M. (2007). Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research, 152(1), 227–256.CrossRefGoogle Scholar
  47. Mesfioui, M., & Quessy, J. F. (2005). Bounds on the value-at-risk for the sum of possibly dependent risks. Insurance: Mathematics and Economics, 37(1), 135–151.Google Scholar
  48. Morokoff, W. J. (2004). An importance sampling method for portfolios of credit risky assets. In Proceedings of the 2004 winter simulation conference (Vol. 36, pp. 1668–1676).Google Scholar
  49. Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). New York, NY: Springer.Google Scholar
  50. Pflug, G. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In S. Uryasev (Ed.), Probabilistic constrained optimization: Methodology and applications. Dordrecht: Kluwer Academic Publishers.Google Scholar
  51. Reitan, T., & Aas, K. (2010). A new robust importance-sampling method for measuring value-at-risk and expected shortfall allocations for credit portfolios. The Journal of Credit Risk, 6(4), 113–149.Google Scholar
  52. Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443–1471.CrossRefGoogle Scholar
  53. Romanko, O., & Mausser, H. (2016). Robust scenario-based value-at-risk optimization. Annals of Operations Research, 237(1–2), 203–218.CrossRefGoogle Scholar
  54. Rosen, D., & Saunders, D. (2010). Risk factor contributions in portfolio credit risk models. Journal of Banking & Finance, 34(2), 336–349.CrossRefGoogle Scholar
  55. Saunders, D., Xiouros, C., & Zenios, S. (2007). Credit risk optimization using factor models. Annals of Operations Research, 152(1), 49–77.CrossRefGoogle Scholar
  56. Schönbucher, P. J. (2001). Factor models: Portfolio credit risks when defaults are correlated. The Journal of Risk Finance, 3(1), 45–56.CrossRefGoogle Scholar
  57. Surya, B. A., & Kurniawan, R. (2014). Optimal portfolio selection based on expected shortfall under generalized hyperbolic distribution. Asia-Pacific Financial Markets, 21(3), 193–236.CrossRefGoogle Scholar
  58. Whitt, W. (1976). Bivariate distributions with given marginals. The Annals of Statistics, 4(6), 1280–1289.CrossRefGoogle Scholar
  59. Zhu, D., & Zinde-Walsh, V. (2009). Properties and estimation of asymmetric exponential power distribution. Journal of Econometrics, 148(1), 86–99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed A. Ayadi
    • 1
  • Hatem Ben-Ameur
    • 2
  • Nabil Channouf
    • 3
  • Quang Khoi Tran
    • 4
  1. 1.GSBBrock UniversitySt. CatharinesCanada
  2. 2.HEC Montréal & GERADMontrealCanada
  3. 3.Sultan Qaboos UniversityAl-KhodSultanate of Oman
  4. 4.HEC MontréalMontrealCanada

Personalised recommendations