Skip to main content
Log in

Financial hedging and competitive strategy for value-maximizing firms under quantity competition

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Inspired by the growing use of financial hedging among competitive firms nowadays, we develop a game-theoretical model to investigate the problem of applying financial hedging to improve a firm’s competitive strategy. A distinctive setting of the model is that the firm value is a concave function of the firm profit, which is consistent with the empirical evidences in finance literature. After proving the unique existence of the Nash equilibrium, we examine the effects of financial hedging on the equilibrium and yield some novel results. In particular, our analysis suggests that in a competitive market, financial hedging is not just to protect a firm’s bottom line; perhaps more importantly, effective financial hedging schemes can help increase the firm value by boosting the firm’s production, raising the market share, and improving its profitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askar, S. S. (2014a). On Cournot–Bertrand competition with differentiated products. Annals of Operations Research, 223, 81–93.

    Article  Google Scholar 

  • Askar, S. S. (2014b). The impact of cost uncertainty on Cournot oligopoly game with concave demand function. Applied Mathematics and Computation, 232, 144–149.

    Article  Google Scholar 

  • Askar, S. S., Ahmed, E., & Elettreby, M. F. (2016). Cournot duopoly model under uncertainty. Nonlinear Science Letters A, 7(1), 13–25.

    Google Scholar 

  • Athey, S. (2002). Monotone comparative statics under uncertainty. The Quarterly Journal of Economics, 117(1), 187–223.

    Article  Google Scholar 

  • Bandaly, D., Satir, A., & Shanker, L. (2014). Integrated supply chain risk management via operational methods and financial instruments. International Journal of Production Research, 52(7), 2007–2025.

    Article  Google Scholar 

  • Birge, J. R. (2014). OM forum: Operations and finance interactions. Manufacturing and Service Operations Management,. https://doi.org/10.1287/msom.2014.0509.

  • Brealey, R. A., Myers, S. C., & Allen, F. (2008). Principles of Corporate Finance (9th ed.). New York: McGraw-Hill/Irwin.

    Google Scholar 

  • Brown, G. W., & Toft, K. B. (2002). How firms should hedge. Review of Financial Studies, 15(4), 1283–1324.

    Article  Google Scholar 

  • Caldentey, R., & Haugh, M. B. (2006). Optimal control and hedging of operations in the presence of financial markets. Mathematics of Operations Research, 31(2), 285–304.

    Article  Google Scholar 

  • Caldentey, R., & Haugh, M. B. (2009). Supply contracts with financial hedging. Operations Research, 57(1), 47–65.

    Article  Google Scholar 

  • Campello, M., Lin, C., Ma, Y., & Zou, H. (2011). The real and financial implications of corporate hedging. Journal of Finance, 66, 1615–1647.

    Article  Google Scholar 

  • Chen, X., Sim, M., Simchi-Levi, D., & Sun, P. (2007). Risk aversion in inventory management. Operations Research, 55(5), 828–842.

    Article  Google Scholar 

  • Chen, F. Y., & Yano, C. A. (2010). Improving supply chain performance and managing risk under weather-related demand uncertainty. Management Science, 56(8), 1380–1397.

    Article  Google Scholar 

  • Chod, J., Rudi, N., & Van Mieghem, J. A. (2010). Operational flexibility and financial hedging: Complements or substitute? Management Science, 56(6), 1030–1045.

    Article  Google Scholar 

  • Demirag, O. C. (2013). Performance of weather-conditional rebates under different risk preferences. Omega, 41, 1053–1067.

    Article  Google Scholar 

  • Ding, Q., Dong, L., & Kouvelis, P. (2007). On the integration of production and financial hedging decisions in global markets. Operations Research, 55(3), 470–489.

    Article  Google Scholar 

  • Duffie, D. (2001). Dynamic Asset Pricing Theory (3rd ed.). Princeton, NJ, USA: Princeton University Press.

    Google Scholar 

  • Facchinei, F., & Kanzow, C. (2010). Generalized Nash Equilibrium problems. Annals of Operations Research, 175, 177–211.

    Article  Google Scholar 

  • Froot, K., Scharfstein, D. S., & Stein, J. C. (1993). Risk management: Coordinating corporate investment and financing policies. Journal of Finance, 48, 1629–1658.

    Article  Google Scholar 

  • Gaur, V., & Seshadri, S. (2005). Hedging inventory risk through market instruments. Manufacturing and Service Operations Management, 7(2), 103–120.

    Article  Google Scholar 

  • Graham, J. R., & Rogers, D. A. (2002). Do firms hedge in response to tax incentives? Journal of Finance, 57, 815–839.

    Article  Google Scholar 

  • Graham, J. R., & Smith, C. W. (1999). Tax incentives to hedge. Journal of Finance, 54, 2241–2262.

    Article  Google Scholar 

  • Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 1644–1655.

    Article  Google Scholar 

  • Hung, Y. H., Li, L. Y. O., & Cheng, T. C. E. (2013). Transfer of newsvendor inventory and supply risks to sub-industry and the public by financial instruments. International Journal of Production Economics, 143, 567–573.

    Article  Google Scholar 

  • Li, R., & Ding, D. (2012). Managing storable commodity risks: Role of inventories and financial hedges. In P. Kouvelis, L. Dong, O. Boyabatli, & R. Li (Eds.), Handbook of Integrated Risk Management in Global Supply Chains. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Ni, J., Chu, L. K., Wu, F., Sculli, D., & Shi, Y. (2012). A multi-stage financial hedging approach for the procurement of manufacturing materials. European Journal of Operational Research, 221, 424–431.

    Article  Google Scholar 

  • Okyay, H. K., Karaesmen, F., & Özekici, S. (2014). Hedging demand and supply risks in the newsvendor model. OR Spectrum,. https://doi.org/10.1007/s00291-014-0385-4.

    Google Scholar 

  • Rabin, M. (2000). Risk aversion and expected utility theory: A calibration theorem. Econometrica, 68, 1281–1292.

    Article  Google Scholar 

  • Regnier, E. (2008). Doing something about the weather. Omega, 36, 22–32.

    Article  Google Scholar 

  • Rountree, B., Weston, J. P., & Allayannis, G. (2008). Do investors value smooth performance? Journal of Financial Economics, 90, 237–251.

    Article  Google Scholar 

  • Sayin, F., Karaesmen, F., & Özekici, S. (2014). Newsvendor model with random supply and financial hedging: Utility-based approach. International Journal of Production Economics, 154, 178–189.

    Article  Google Scholar 

  • Shaked, M., & Shanthikumar, J. G. (2007). Stochastic Orders. New York, NY, USA: Springer.

    Book  Google Scholar 

  • Smith, C. W., & Stulz, R. M. (1985). The determinants of firms’ hedging policies. Journal of Financial and Quantitative Analysis, 20(4), 391–405.

    Article  Google Scholar 

  • Sun, Y., Wissel, J., & Jackson, P. L. (2013). Separation results for multi-product inventory hedging problems. Annals of Operations Research,. https://doi.org/10.1007/s10479-013-1473-6.

    Google Scholar 

  • Tekin, M., & Özekici, S. (2014). Mean–Variance Newsvendor Model with Random Supply and Financial Hedging. IIE Transactions,. https://doi.org/10.1080/0740817X.2014.981322.

  • Van Mieghem, J. A. (2003). Capacity management, investment, and hedging: Review and recent developments. Manufacturing and Service Operations Management, 5(4), 269–302.

    Article  Google Scholar 

  • Wiggins, J., Blas, J. (2008). Food and consumer groups get hedge smart. Financial Times, August 17, 2008.

Download references

Acknowledgements

The authors would like to thank the Editor and the anonymous referee for their insightful comments. We also gratefully acknowledge support from the National Natural Science Foundation of China (NSFC Nos. 71601159, 71673275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoude Li.

Ethics declarations

Ethical standard

The authors have read the section on “ethical responsibilities of authors” and decided that we have complied fully with the requirements of the COPE. We also confirm that (1) The authors are full-time employees of their respective academic institutions. They received on other research funding from internal or external funding bodies for this research. (2) This research involves no human participants or the use of live animals.

Appendix

Appendix

Proof of Lemma 1

  1. (i)

    The concavity of \(V_1 \left( {q_1 ;q_2 } \right) \) follows directly from the inequality (3). Similarly we can prove that \(V_2 \left( {q_2 ;q_1 } \right) \) is concave in \(q_2 \).

  2. (ii)

    It is straightforward to verify that \(V_1 \left( 0 \right) =0\). Then, for \(q_2 \in \left[ {0,q_M } \right] \) we have \(V_1^{\prime } \left( {0;q_2 } \right) =u_1^{\prime } \left( 0 \right) E\left[ {\left( {{\tilde{Y}} -c_1 -kq_2 } \right) } \right] \). If \(q_2 >\frac{E\left( {{\tilde{Y}} } \right) -c_1 }{k}\), then \(V_1^{\prime } \left( {0;q_2 } \right) <0\), and from the concavity of the function \(V_1 \left( {q_1 } \right) \) the solution of \(V_1^{\prime } \left( {q_1 ;q_2 } \right) =0\) will be negative. Thus, we have \({\hat{q}} _1 \left( {q_2 } \right) =0\) when \(q_2 >\frac{E\left( {{\tilde{Y}} } \right) -c_1 }{k}\). Otherwise, if \(0\le q_2 \le \frac{E\left( {{\tilde{Y}} } \right) -c_1 }{k}\), then \(V_1^{\prime } \left( {0;q_2 } \right) \ge 0\). Thus, the solution of \(V_1^{\prime } \left( {q_1 ;q_2 } \right) =0\) is non-negative. Combined with the fact that \(V_1^{{\prime }{\prime }} \left( q \right) <0\), we know that \({\hat{q}} _1 \left( {q_2 } \right) \) is the unique solution of \(V_1^{\prime } \left( {q_1 ;q_2 } \right) =0\) when \(0\le q_2 \le \frac{E\left( {{\tilde{Y}} } \right) -c_1 }{k}\).

  3. (iii)

    The proof follows directly from (ii) above.

  4. (iv)

    It is straightforward to verify that \(V_i \left( {q_M } \right) <0=V_i \left( 0 \right) \), which means that for each firm, producing \(q_M \) units of product is strictly worse than producing nothing, regardless of the production quantity of the competitor. Thus, \({\hat{q}} _i \left( q \right) <q_M \). \(\square \)

Proof of Proposition 1

(i) Using Eq. (2) and differentiating \(V_1^{\prime } \left( {q_1 ;q_2 } \right) \) with respect to \(q_2 \), we have

$$\begin{aligned} \frac{\partial V_1{^{\prime }}\left( {q_1 ;q_2 } \right) }{\partial q_2 }= & {} -\,kq_1 E\left[ {\left( {{\tilde{Y}} -c_1 -k\left( {2q_1 +q_2 } \right) } \right) u_1^{{\prime }{\prime }} \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] \\&-\,kE\left[ {u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] \\= & {} \gamma _1 kq_1 E\left[ {\left( {{\tilde{Y}} -c_1 -k\left( {2q_1 +q_2 } \right) } \right) u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] \\&-\,kE\left[ {u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] \end{aligned}$$

where the second equality follows from the fact that \(u_1^{\prime } \left( z \right) =e^{-\gamma _1 z}\). We are only interested in analyzing the sign of the above partial derivative at \(V_1^{\prime } \left( {q_1 ;q_2 } \right) =0\), in which we know from Eq. (2) that \(E\left[ {\left( {{\tilde{Y}} -c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] =0\). Thus, the following inequality holds:

$$\begin{aligned} \frac{\partial V_1{}^{\prime }\left( {q_1 ;q_2 } \right) }{\partial q_2 }=-\,kE\left[ {u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] <0 \end{aligned}$$

which implies that \(V_1 \left( {q_1 ;q_2 } \right) \) is (strictly) submodular in \(\left( {q_1 ,q_2 } \right) \) around the point \(\left( {{\hat{q}} _1 \left( {q_2 } \right) ,q_2 } \right) \). Together with Lemma 1 (ii), we know that the best response \({\hat{q}} _1 \left( {q_2 } \right) \) is a decreasing function with \({\hat{q}} _1^{\prime } \left( {q_2 } \right) <0\) for \(0\le q_2 <\frac{E\left( {{\tilde{Y}} } \right) -c_1 }{k}\) (Athey 2002). Moreover, to estimate the lower bound of \({\hat{q}} _1^{\prime } \left( {q_2 } \right) \), one can easily verify the following inequality:

$$\begin{aligned} \frac{-1}{{\hat{q}} _1^{\prime } \left( {q_2 } \right) }=\frac{E\left[ {-u_1^{{\prime }{\prime }} \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) \left( {{\tilde{Y}} -c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) ^{2}} \right] }{kE\left[ {u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] }+2>2 \end{aligned}$$

which implies that \({\hat{q}} _1^{\prime } \left( {q_2 } \right) >-0.5\). Notice that the above results are independent of the curvature parameter \(\gamma _1 \) and the distribution of the risk factor \({\tilde{Y}} \). Thus, one can similarly derive the results for \({\hat{q}} _2 \left( {q_1 } \right) \).

(ii) Firstly, writing out \(V_1^{\prime } \left( {q_1 } \right) \) in terms of the density function \(f\left( y \right) \) of \({\tilde{Y}} \), we have

$$\begin{aligned} V_1^{\prime } \left( {q_1 ;q_2 } \right)= & {} \mathop \int \nolimits _{y_1 }^{ y_U } u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \left( {y-c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) f\left( y \right) dy\\&-\mathop \int \nolimits _{y_L }^{ y_1 } u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \left( {c_1 +k\left( {2q_1 +q_2 } \right) -y} \right) f\left( y \right) dy \end{aligned}$$

where \(y_1 =c_1 +k\left( {2q_1 +q_2 } \right) \). From the fact that \(u_1^{\prime } \left( z \right) =e^{-\gamma _1 z}\), we can calculate the following partial derivative:

$$\begin{aligned} \frac{\partial V_1^{\prime }(q_{1};\gamma _1)}{\partial \gamma _1}= & {} -\mathop \int \nolimits _{y_1 }^{ y_U } u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \pi _1 \left( {q_1 ,q_2 ;y} \right) \left( {y-c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) f\left( y \right) dy\\&+\mathop \int \nolimits _{y_L }^{ y_1 } u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \pi _1 \left( {q_1 ,q_2 ;y} \right) \left( {c_1 +k\left( {2q_1 +q_2 } \right) -y} \right) f\left( y \right) dy \end{aligned}$$

We also estimate this derivative at \(V_1^{\prime } \left( {q_1 ;q_2 } \right) =0\). Notice that \(\pi _1 \left( {q_1 ,q_2 ;y} \right) =\left( {y-c_1 -\,\,k\left( {q_1 +q_2 } \right) } \right) q_1 >kq_1^2 \) for \(y>y_1 \), while \(\pi _1 \left( {q_1 ,q_2 ;y} \right) <kq_1^2 \) for \(y>y_1 \). Thus, the following inequality holds:

$$\begin{aligned}&\frac{\partial V_1^{\prime }\left( {q_1 ;\gamma _1 } \right) }{\partial \gamma _1 }<-\,kq_1^2 \left[ {\mathop \int \nolimits _{y_1 }^{ y_U } u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \left( {y-c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) f\left( y \right) dy}\right. \\&\quad \left. {-\mathop \int \nolimits _{y_L }^{ y_1 } u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \left( {y-c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) f\left( y \right) dy} \right] =-\,kq_1^2 V_1^{\prime } \left( {q_1 } \right) =0 \end{aligned}$$

It then follows that that \({\hat{q}} _1 \left( {q_2 ;\gamma _1 } \right) \) will decrease as \(\gamma _1 \) increases. Obviously, similar result holds for \({\hat{q}} _2 \left( {q_1 ;\gamma _2 } \right) \). \(\square \)

Proof of Proposition 2

The existence of the solution \(q_1^*\) follows directly from the continuity of the function \(G_1 \left( {q_1 } \right) \) and the following two inequalities: \(G_1 \left( 0 \right) =-{\hat{q}} _1 \left( {{\hat{q}} _2 \left( {q_1 } \right) } \right) <0\) and \(G_1 \left( {q_M } \right) =q_M -{\hat{q}} _1 \left( 0 \right) >0\). Then, the uniqueness of \(q_1^*\) is due to the monotonicity of the function \(G_1 \left( {q_1 } \right) \) as follows:

$$\begin{aligned} G_1^{\prime } \left( {q_1 } \right) =1-{\hat{q}} _1^{\prime } \left( {{\hat{q}} _2 \left( {q_1 } \right) } \right) {\hat{q}} _2^{\prime } \left( {q_1 } \right) >1-\frac{1}{4}=\frac{3}{4} \end{aligned}$$

Now set \(q_2^*={\hat{q}} _2 \left( {q_1^*} \right) \). From Proposition 1 (i), we know that (\(q_1^*,q_2^*)\) is the unique Nash equilibrium. \(\square \)

Proof of Lemma 2

This lemma follows directly from the fact that an affine transformation of random variables will not affect the stochastic dominance relationship between these random variables (see, e.g., Shaked and Shanthikumar 2007).

Proof of Proposition 3

The first part of this proposition can be verified directly following the proof of Proposition 1, because our proving process for that proposition does not rely on the distribution of the random variable \({\tilde{Y}} \). Then, the second part of this proposition follows from Proposition 2. \(\square \)

Proof of Proposition 4

Given an effective financial hedging (\({\tilde{Y}} _{H1} \succ {\tilde{Y}} )\), for any fixed pair \(\left( {q_1 ,q_2 } \right) \) we know from Lemma 2 that \(\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} _{H1} } \right) \succ \pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} _{H1} } \right) \); thus, for the (strictly) increasing and concave function \(u_1 \left( \cdot \right) \), we have \(V_{1,H1} \left( {q_1 ,q_2 } \right) =E\left[ {u_1 \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} _{H1} } \right) } \right) } \right] >E\left[ {u_1 \left( {\pi _1 \left( {q_1 ,q_2 ;{\tilde{Y}} } \right) } \right) } \right] =V_1 \left( {q_1 ,q_2 } \right) \) (Shaked and Shanthikumar 2007). It then follows that

$$\begin{aligned} V_{1,H1} \left( {q_{1,H1}^*;q_{2,H1}^*} \right)= & {} \mathop {\max }\limits _{q_1 } V_{1,H1} \left( {q_1 ;{\hat{q}} _2 \left( {q_1 } \right) } \right) \ge V_{1,H1} \left( {q_1^*;{\hat{q}} _2 \left( {q_1^*} \right) } \right) \\> & {} V_1 \left( {q_1^*;{\hat{q}} _2 \left( {q_1^*} \right) } \right) =V_1 \left( {q_1^*;q_2^*} \right) \end{aligned}$$

In other words, the firm value is increased with financial hedging. \(\square \)

Proof of Proposition 5

First of all, define a new function \(g\left( y \right) =u_1^{\prime } \left( {\pi _1 \left( {q_1 ,q_2 ;y} \right) } \right) \left( {y-c_1 -\,k\left( {2q_1 +q_2 } \right) } \right) \). We can calculate its first- and second-order derivatives as follows:

$$\begin{aligned} g'\left( y \right) = u_1^{''}\left( {{\pi _1}\left( {{q_1},{q_2};y} \right) } \right) \left( {y - {c_1} - k\left( {2{q_1} + {q_2}} \right) } \right) {q_1} + u_1'\left( {{\pi _1}\left( {{q_1},{q_2};y} \right) } \right) \end{aligned}$$

and

$$\begin{aligned} g''\left( y \right)= & {} u_1^{'''}\left( {{\pi _1}\left( {{q_1},{q_2};y} \right) } \right) \left( {y - {c_1} - k\left( {2{q_1} + {q_2}} \right) } \right) q_1^2 + 2u_1^{''}\left( {{\pi _1}\left( {{q_1},{q_2};y} \right) } \right) {q_1} \\= & {} u_1^{''}\left( {{\pi _1}\left( {{q_1},{q_2};y} \right) } \right) {q_1}\left[ {2 - {\gamma _1}{\pi _1}\left( {{q_1},{q_2}} \right) + {\gamma _1}kq_1^2} \right] \end{aligned}$$

Notice that \(u_1^{{\prime }{\prime }} \left( \cdot \right) <0\). Thus, given Assumption 1 we have \({g}^{{\prime }{\prime }}(y)<0\). It follows that for any effective hedge such that \({\tilde{Y}} _{H1} \succ {\tilde{Y}} \), we have

$$\begin{aligned} \frac{\partial }{\partial q_1 }V_{1,H1} \left( {q_1 ;q_2 } \right) =E\left[ {g\left( {{\tilde{Y}} _{H1} ;q_1 } \right) } \right] >E\left[ {g\left( {{\tilde{Y}} ;q_1 } \right) } \right] =\frac{\partial }{\partial q_1 }V_1 \left( {q_1 ;q_2 } \right) \end{aligned}$$

which implies that \({\hat{q}} _{1,H1} \left( {q_2 } \right) >{\hat{q}} _1 \left( {q_2 } \right) \) (Athey 2002). \(\square \)

Proof of Proposition 6

Let us define \(G_{1,H1} \left( {q_1 } \right) =q_1 -{\hat{q}} _{1,H1} \left( {{\hat{q}} _2 \left( {q_1 } \right) } \right) \). Obviously, \(G_{1,H1} \left( {q_{1,H1}^*} \right) =0\). Besides, from Proposition 5 we know that under Assumption 1, \({\hat{q}} _{1,H1} \left( {q_2 } \right) >{\hat{q}} _1 \left( {q_2 } \right) \). Combined with the fact that \({\hat{q}} _{1,H1} \left( q \right) \) is a decreasing function, we have

$$\begin{aligned} G_{1,H1} \left( {q_1^*} \right) =q_1^*-{\hat{q}} _{1,H1} \left( {{\hat{q}} _2 \left( {q_1^*} \right) } \right) <q_1^*-{\hat{q}} _1 \left( {{\hat{q}} _2 \left( {q_1^*} \right) } \right) =0 \end{aligned}$$

In addition, from Proposition 3 we have \(G_{1,H1}^{\prime } \left( q \right) =1-{\hat{q}} _{1,H1}^{\prime } \left( {{\hat{q}} _2 \left( q \right) } \right) {\hat{q}} _2^{\prime } \left( q \right)>1-\frac{1}{4}>0\). Taken together, we must have \(q_{1,H1}^*>q_1^*\).

Similarly, we can define \(G_{2,H1} \left( {q_2 } \right) =q_2 -{\hat{q}} _2 \left( {{\hat{q}} _{1,H1} \left( {q_2 } \right) } \right) \). Under Assumption 1, it is easy to verify that

$$\begin{aligned} G_{2,H1} \left( {q_2^*} \right) =q_2^*-{\hat{q}} _2 \left( {{\hat{q}} _{1,H1} \left( {q_2^*} \right) } \right) >q_2^*-{\hat{q}} _2 \left( {q_1^*} \right) =0 \end{aligned}$$

and \(G_{2,H1}^{\prime } \left( q \right) >0\). It then follows that \(q_{2,H1}^*<q_2^*\).

Further, by definition we have \(q_2^*={\hat{q}} _2 \left( {q_1^*} \right) \) and \(q_{2,H1}^*={\hat{q}} _2 \left( {q_{1,H1}^*} \right) \). From the Lagrange mean value theorem, there exists a \({\bar{q}} _1 \in \left( {q_1^*,q_{1,H1}^*} \right) \) such that \(q_{2,H1}^*-q_2^*={\hat{q}} _2^{\prime } \left( {{\bar{q}} _1 } \right) \left( {q_{1,H1}^*-q_1^*} \right) \). From proposition 1, \({\hat{q}} _2^{\prime } \left( {{\bar{q}} _1 } \right) \in \left( {-0.5,0} \right) \), which means that \(q_{2,H1}^*-q_2^*>-0.5\left( {q_{1,H1}^*-q_1^*} \right) \). It then follows that

$$\begin{aligned} q_{1,H1}^*+q_{2,H1}^*-\left( {q_1^*+q_2^*} \right) =\left( {q_{1,H1}^*-q_1^*} \right) +\left( {q_{2,H1}^*-q_2^*} \right) >\frac{1}{2}\left( {q_{1,H1}^*-q_1^*} \right) \end{aligned}$$

Under Assumption 1, we already know that \(q_{1,H1}^*>q_1^*\); thus, \(q_{1,H1}^*+q_{2,H1}^*-\left( {q_1^*+q_2^*} \right) >0\). \(\square \)

Proof of Proposition 7

Let us define a function as follows: \(G_H \left( q \right) =q-{\hat{q}} _H \left( q \right) \). Obviously, \(G_H \left( {q_H^*} \right) =0\). Under Assumption 1, from Proposition 5 we know that \({\hat{q}} _H \left( {q_1^*} \right) >{\hat{q}} \left( {q_1^*} \right) =q_2^*\). Thus,

$$\begin{aligned} G_H \left( {q_1^*} \right) =q_1^*-{\hat{q}} _H \left( {q_1^*} \right) <q_1^*-q_2^*=0 \end{aligned}$$

Together with the inequality that \(G_H^{\prime } \left( q \right) =1-{\hat{q}} _H^{\prime } \left( q \right) >0\), we have \(q_H^*>q^{*}\).

Then, it is straightforward to verify the following:

$$\begin{aligned} V_H \left( {q_H^*} \right) =\mathop {\max }\limits _q V_H \left( q \right) \ge V_H \left( {q^{*}} \right) >V\left( {q^{*}} \right) \end{aligned}$$

which is just analogous to Proposition 4. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Chu, L.K. & Li, S. Financial hedging and competitive strategy for value-maximizing firms under quantity competition. Ann Oper Res 264, 391–407 (2018). https://doi.org/10.1007/s10479-017-2637-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2637-6

Keywords

Navigation