Skip to main content
Log in

Outsourcing management under various demand Information Sharing scenarios

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Outsourcing has been praised as a cost effective solution for many companies. One of the major potential issues of outsourcing is the poor quality of outsourcing work. In this research, Stackelberg game is used to design an outsourcing contract for a supplier and a buyer to decide the optimal outsourcing price, retail price, and outsourcing quality with demand uncertainty. The supplier and buyer’s demand forecasting are private information to each part and cause asymmetric information in the outsourcing contract design. Three different forecast scenarios are studied, including Non-Information Sharing, Information Sharing, and Buyer Forecasting case. Optimal values of outsourcing price, retail price, and outsourcing quality level are derived. We then compare the optimal policies of three cases and derive several managerial insights. Results of extensive numerical experimentation are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksin, Z., de Vericourt, F., & Karaesmen, F. (2008). Call center outsourcing contract analysis and choice. Management Science, 54(2), 354–368.

    Article  Google Scholar 

  • Banker, R., Khosla, I., & Sinha, K. (1998). Quality and competition. Management Science, 44(9), 1179–1192.

    Article  Google Scholar 

  • Britz, B., Young, A., Tramacere, G., Blackmore, D., Tenneson, C., Sawai, M., & Jester, R. (2011). Forecast analysis: IT outsourcing, worldwide, 2010–2015, 4Q11 Update. Gartner. https://www.gartner.com/doc/1881228/forecast-analysis-it-outsourcing-worldwide. Accessed 14 January 2015.

  • Byrne, P., & Heavey, C. (2006). The impact of information sharing and forecasting in capacitated industrial supply chains: A case study. International Journal of Production Economics, 103(1), 420–437.

    Article  Google Scholar 

  • Cezar, A., Cavusoglu, H., & Raghunathan, S. (2014). Outsourcing information security: Contracting issues and security implications. Management Science, 60(3), 638–657.

    Article  Google Scholar 

  • Cachon, G., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management Science, 46(8), 1032–1048.

    Article  Google Scholar 

  • Cachon, G., & Lariviere, M. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management Science, 47(5), 629–646.

    Article  Google Scholar 

  • Chen, W., Feng, Q., & Seshadri, S. (2013). Sourcing from suppliers with random yield for price-dependent demand. Annals of Operations Research, 208(1), 557–579.

    Article  Google Scholar 

  • Chiu, C., & Choi, T. (2013). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research. doi:10.1007/s10479-013-1386-4.

  • Choi, T., & Sethi, S. (2010). Innovative quick response programs: A review. International Journal of Production Economics, 127(1), 1–12.

    Article  Google Scholar 

  • Chow, P. S., Wang, Y., Choi, T. M., & Shen, B. (2014). An experimental study on the effects of minimum profit share on supply chains with markdown contract: Risk and profit analysis. Omega. doi:10.1016/j.omega.2013.11.007.

  • Corbett, C. J., Zhou, D., & Tang, C. S. (2004). Designing supply contracts: Contract type and information asymmetry. Management Science, 50(4), 550–559.

    Article  Google Scholar 

  • Gal-Or, E. (1985). Information sharing in an oligopoly. Econometrica, 53, 329–343.

    Article  Google Scholar 

  • Gavirneni, S., Kapuscinski, R., & Tayur, S. (1999). Value of information in capacitated supply chains. Management Science, 45(1), 16–24.

    Article  Google Scholar 

  • Gavious, A., & Lowengart, O. (2012). Price-quality relationship in the presence of asymmetric dynamic reference quality effects. Marketing Letters, 23(1), 137–161.

    Article  Google Scholar 

  • Ha, A. Y. (2001). Supplier-buyer contracting: Asymmetric cost information and cutoff level policy for buyer participation. Naval Research Logistics, 48(1), 41–64.

    Article  Google Scholar 

  • Ho, T. H., & Zheng, Y. (2004). Setting customer expectation in service delivery: An integrated marketing-operations perspective. Management Science, 50(4), 479–489.

    Article  Google Scholar 

  • Hsu, Y., & Lambrecht, B. M. (2007). Preemptive patenting under uncertainty and asymmetric information. Annals of Operations Research, 151(1), 5–28.

    Article  Google Scholar 

  • Huettel, S. (2004). Delta thinks of charging more for American voice on phone. http://www.sptimes.com/2004/07/28/Business/Delta_thinks_of_charg.shtml. Accessed 14 January 2015.

  • Lee, H., So, K., & Tang, C. (2000). The value of information sharing in a two-level supply chain. Management Science, 46(5), 626–643.

    Article  Google Scholar 

  • Li, L., & Zhang, H. (2008). Confidentiality and information sharing in supply chain coordination. Management Science, 54(8), 1467–1481.

    Article  Google Scholar 

  • Liu, Z., & Nagurney, A. (2013). Supply chain networks with global outsourcing and quick-response production under demand and cost uncertainty. Annals of Operations Research, 208(1), 251–289.

    Article  Google Scholar 

  • Mukhopadhyay, S. K., & Kouvelis, P. (1997). A differential game theoretic model for duopolistic competition on design quality. Operations Research, 45(6), 886–893.

    Article  Google Scholar 

  • Mukhopadhyay, S. K., Zhu, X., & Yue, X. (2008). Optimal contract design for mixed channels under information asymmetry. Production and Operations Management, 17(6), 641–650.

    Article  Google Scholar 

  • Mukhopadhyay, S. K., Yue, X., & Zhu, X. (2011). A Stackelberg model of pricing of complementary goods under information asymmetry. International Journal of Production Economics, 134(2), 424–433.

    Article  Google Scholar 

  • Ren, Z., & Zhou, Y.-P. (2008). Call center outsourcing: Coordinating staffing level and service quality. Management Science, 54(2008), 369–383.

    Article  Google Scholar 

  • Raju, J. S., & Roy, A. (2000). Market information and firm performance. Management Science, 46(8), 1075–1084.

    Article  Google Scholar 

  • Roy, A. (2000). Market information and channel price structure. International Journal of Research in Marketing, 17, 331–351.

    Article  Google Scholar 

  • Vives, X. (1984). Duopoly information equilibrium: Cournot and Bertrand. Journal of Economic Theory, 34, 71–94.

    Article  Google Scholar 

  • Wang, X., Wu, Y., Liang, L., & Huang, Z. (2014). Service outsourcing and disaster response methods in a relief supply chain. Annals of Operations Research. doi:10.1007/s10479-014-1646-y.

  • Wang, Y., Wallace, S. W., Shen, B., & Choi, T. (2015). Service supply chain management: A review of operational models. European Journal of Operational Research. doi:10.1016/j.ejor.2015.05.053.

  • Winkler, R. L. (1981). Combining probability distributions from dependent information sources. Management Science, 27(4), 479–488.

    Article  Google Scholar 

  • Xie, W., Zhao, Y., Jiang, Z., & Chow, P. (2013). Optimizing product service system by franchise fee contracts under information asymmetry. Annals of Operations Research. doi:10.1007/s10479-013-1505-2.

  • Yang, D., Choi, T., Xiao, T., & Cheng, T. (2011). Coordinating a two-supplier and one-retailer supply chain with forecast updating. Automatica, 47(7), 1317–1329.

    Article  Google Scholar 

  • Ye, G., Zhu, X., & Mukhopadhyay, S. K. (2014). Managing service quality in multiple outsourcing. International Journal of Electronic Commerce, 18(3), 125–149.

    Article  Google Scholar 

  • Yue, X., Mukhopadhyay, S. K., & Zhu, X. (2006). A Bertrand model of pricing of complementary goods under information asymmetry. Journal of Business Research, 59, 1182–1192.

    Article  Google Scholar 

  • Zhu, X., Mukhopadhyay, S. K., & Yue, X. (2011). Role of forecast effort on supply chain profitability under various information sharing scenarios. International Journal of Production Economics, 129(2), 284–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zhu.

Appendix

Appendix

Proof of Proposition 1

The buyer (follower, decision variable is p) and the supplier (leader, decision variables are c and Q) maximize her and his profit, respectively.

We solve this game backward.

  • The leader supplier calculates the follower buyer’s best response function. Please note that the follower buyer can infer the leader supplier’s forecast, \(f_{\mathrm{S}}\), after the supplier announce c and Q (or \(f_{\mathrm{S}}\) can be inferred by solving linear function of c and Q).

    $$\begin{aligned} E(\pi _B |f_B ,f_S )= & {} (p-c)(E(a|f_B ,f_S )-bp+\theta Q) \\ \frac{\partial E(\pi _B |f_B ,f_S )}{\partial p}= & {} E(a|f_B ,f_S )-2bp+cb+\theta Q=0 \\ p^{BR}= & {} \frac{E(a|f_B ,f_S )+cb+\theta Q}{2b} \\ \end{aligned}$$
  • The leader supplier plugs buyer’s best response function into his profit function to get c and Q.

    $$\begin{aligned} E(\pi _S |f_S )= & {} c\left[ {E(a|f_S )-bE(p^{BR}|f_S )+\theta Q} \right] -\frac{L}{2}Q^{2} \\= & {} c\left[ {E(a|f_S )-bE\left( \frac{E(a|f_B ,f_S )+cb+\theta Q}{2b}|f_S \right) +\theta Q} \right] -\frac{L}{2}Q^{2} \\= & {} c\left[ {E(a|f_S )-b\frac{E(a|f_S )+cb+\theta Q}{2b}+\theta Q} \right] -\frac{L}{2}Q^{2} \\= & {} c\left[ {\frac{E(a|f_S )}{2}-\frac{cb}{2}+\frac{\theta Q}{2}} \right] -\frac{L}{2}Q^{2} \\= & {} \frac{cE(a|f_S )}{2}-\frac{c^{2}b}{2}+\frac{c\theta Q}{2}-\frac{L}{2}Q^{2} \\ \end{aligned}$$

    \(\frac{\partial E\left( {\pi _S \hbox {|}f_S } \right) }{\partial c}=\frac{E\left( {a|f_m } \right) }{2}-cb+ \frac{\theta Q}{2}=0\) or \(\frac{A_S}{2}-cb +\frac{\theta Q}{2}=0\) and \(\frac{\partial E\left( {\pi _S \hbox {|}f_S } \right) }{\partial Q}=\frac{c \theta }{2}-LQ=0\) We can get the following from the above equations.

    $$\begin{aligned} \left\{ {{\begin{array}{l} {c=\frac{A_S +\theta Q}{2b}} \\ {Q=\frac{c\theta }{2L}} \\ \end{array} }} \right. \end{aligned}$$

    Solving the above two equations simultaneously, we get the following. \(c^{N*}=\frac{2LA_S }{4Lb-\theta ^{2}}\) and \(Q^{N*}=\frac{\theta A_S }{4Lb-\theta ^{2}}\)

  • Optimal retail price can get by plug \(c^{N*}\) and \(Q^{N*}\)into the best response function.

    $$\begin{aligned} p^{BR}= & {} \frac{E(a|f_B ,f_S )+bc^{*}+\theta Q^{*}}{2b}=\frac{A+bc^{*}+\theta Q^{*}}{2b}\\ p^{N*}= & {} \frac{A}{2b}+\frac{\left( {\theta ^{2}+2Lb} \right) A_S }{2b\left( {4Lb-\theta ^{2}} \right) }\\ E\left( {\pi _B \hbox {|}f_B ,f_S } \right) ^{N*}= & {} E(\left( {p^{*}-c^{*}} \right) \left( {A-bp^{*}+\theta Q^{*})\hbox {|}f_B ,f_S } \right) ^{N*}\\= & {} \frac{\left( {4ALb-A\theta ^{2}+A_S \theta ^{2}-2A_S Lb} \right) ^{2}}{4b\left( {4Lb-\theta ^{2}} \right) ^{2}} \end{aligned}$$

    Since \(E\left( {A^{2}} \right) =\bar{a}^{2}+J^{2}\left( {U+V_S } \right) +K^{2}\left( {U+V_B } \right) \), \(E\left( {A_S ^{2}} \right) =\bar{a}^{2}+t_S U\), and

    $$\begin{aligned} E\left( {A*A_S } \right) =\bar{a}^{2}+JU, \end{aligned}$$

    we can get unconditional buyer’s profit

    $$\begin{aligned} E\left( {\pi _B \hbox {|}f_B ,f_S } \right) ^{N*}= & {} \frac{\bar{a}^{2}+J^{2}\left( {U+V_S } \right) +K^{2}\left( {U+V_B } \right) }{4b}+\frac{\left( {\theta ^{2}-2Lb} \right) \left( {\bar{a}^{2}+JU} \right) }{2b\left( {4Lb-\theta ^{2}} \right) }\\&+\,\frac{\left( {\theta ^{2}-2Lb} \right) ^{2}\left( {\bar{a}^{2}+t_S U} \right) }{4b\left( {4Lb-\theta ^{2}} \right) ^{2}} \end{aligned}$$

    Similar, we can get

    $$\begin{aligned} E(\pi _S |f_S )^{N*}= & {} E(c^{*}\left( {A-bp^{*}+\theta Q^{*})\hbox {|}f_S } \right) -\frac{LQ^{{*}^{2}}}{2}=\frac{A_S ^{2}L}{2\left( {4Lb-\theta ^{2}} \right) }\\ E\left( {\pi _S } \right) ^{N*}= & {} \frac{\left( {\bar{a}^{2}+t_S U} \right) L}{2\left( {4Lb-\theta ^{2}} \right) }=\frac{(\bar{a}^{2}+Ut_S )L}{2\left( {4Lb-\theta ^{2}} \right) } \end{aligned}$$

Proof of Proposition 2

The proof of Proposition 6 is similar to Proposition 1. We will briefly show the steps as below.

  • The leader supplier calculates the follower buyer’s best response function. Please note that the follower buyer has both information \(f_{\mathrm{S}}\) and \(f_{\mathrm{B}}\) in Information Sharing case.

    $$\begin{aligned} \begin{array}{l} E(\pi _B |f_B ,f_S )=(p-c)(E(a|f_B ,f_S )-bp+\theta Q) \\ \frac{\partial E(\pi _B |f_B ,f_S )}{\partial p}=E(a|f_B ,f_S )-2bp+cb+\theta Q=0 \\ p^{BR}=\frac{E(a|f_B ,f_S )+cb+\theta Q}{2b} \\ \end{array} \end{aligned}$$
  • The leader supplier plugs buyer’s best response function into his profit function to get c and Q. Please note that the leader supplier also has both information \(f_{\mathrm{S}}\) and \(f_{\mathrm{B}}\) in Information Sharing case.

    $$\begin{aligned} E(\pi _S |f_B ,f_S )= & {} c\left[ {E(a|f_B ,f_S )-bE(p^{BR}|f_B ,f_S )+\theta Q} \right] -\frac{L}{2}Q^{2} \\= & {} c\left[ {E(a|f_B ,f_S )-b\frac{E(a|f_B ,f_S )+cb+\theta Q}{2b}+\theta Q} \right] -\frac{L}{2}Q^{2} \\= & {} \frac{cE(a|f_B ,f_S )}{2}-\frac{c^{2}b}{2}+\frac{c\theta Q}{2}-\frac{L}{2}Q^{2} \\&\quad \left\{ {{\begin{array}{l} {\frac{\partial E\left( {\pi _S \hbox {|}f_B ,f_S} \right) }{\partial c}=\frac{E\left( {a|f_B ,f_S} \right) }{2}-cb+\frac{\theta Q}{2}=\frac{A}{2}-cb+\frac{\theta Q}{2}=0} \\ {\frac{\partial E\left( {\pi _S \hbox {|}f_B ,f_S} \right) }{\partial Q}=\frac{c \theta }{2}-LQ=0} \\ \end{array} }} \right. \end{aligned}$$

    Solving the above two equations simultaneously, we get the following. \(c^{I*}=\frac{2LA}{4Lb-\theta ^{2}}\) and \(Q^{I*}=\frac{\theta A}{4Lb-\theta ^{2}}\)

  • Optimal retail price can get by plug \(c^{I*}\) and \(Q^{I*}\) into the best response function.

    $$\begin{aligned} p^{I*}=\frac{3LA}{4Lb-\theta ^{2}} \end{aligned}$$

    Then we can get the expected profits and unconditional expected profits for the buyer and the supplier, as in Proposition 2.

Proof of Proposition 3

The proof of Proposition 6 is similar to Proposition 2. We will briefly show the steps as below.

  • The leader supplier calculates the follower buyer’s best response function. Please note that only the buyer forecasts the demand. All decision making is based on the buyer’s forecast \(f_{\mathrm{B}}\) in Buyer Forecast case.

    $$\begin{aligned} E(\pi _B |f_B )= & {} (p-c)(E(a|f_B )-bp+\theta Q) \\ \frac{\partial E(\pi _B |f_B )}{\partial p}= & {} E(a|f_B )-2bp+cb+\theta Q=0 \\ p^{BR}= & {} \frac{E(a|f_B )+cb+\theta Q}{2b} \\ \end{aligned}$$
  • The leader supplier plugs buyer’s best response function into his profit function to get c and Q. Please note that the leader supplier use buyer’s forecast \(f_{\mathrm{B}}\) in his decision making under Buyer Forecast case.

    $$\begin{aligned} E(\pi _S |f_B )= & {} c\left[ {E(a|f_B )-bE(p^{BR}|f_B )+\theta Q} \right] -\frac{L}{2}Q^{2} \\= & {} \frac{cE(a|f_B )}{2}-\frac{c^{2}b}{2}+\frac{c\theta Q}{2}-\frac{L}{2}Q^{2} \\&\quad \left\{ {{\begin{array}{l} {\frac{\partial E\left( {\pi _S \hbox {|}f_B } \right) }{\partial c}=\frac{A_{B}}{2}-cb+\frac{\theta Q}{2}=0} \\ {\frac{\partial E\left( {\pi _S \hbox {|}f_B } \right) }{\partial Q}=\frac{c \theta }{2}-LQ=0} \\ \end{array} }} \right. \end{aligned}$$

    Solving the above two equations simultaneously, we get the following. \(c^{B*}=\frac{2LA_B }{4Lb-\theta ^{2}}\) and \(Q^{B*}=\frac{\theta A_B }{4Lb-\theta ^{2}}\)

  • Optimal retail price can get by plug \(c^{B*}\) and \(Q^{B*}\) into the best response function.

    $$\begin{aligned} p^{B*}=\frac{3LA_B }{4Lb-\theta ^{2}} \end{aligned}$$

    Then we can get the expected profits and unconditional expected profits for the buyer and the supplier, as in Proposition 3.

Proof of Proposition 4

Part 4(a)

\(c^{I}-c^{B}=\frac{(A-A_B )}{4Lb-\theta ^{2}}<0\) if \(A<A_B \) or \(f_S <E(f_S |f_B )\).

We next show that \(A<A_B \) is equivalent to \(f_S <E(f_S |f_B )\).

  • Proof of \(E\left( {A\hbox {|}f_B } \right) =A_B \)

$$\begin{aligned} E(A|f_B)= & {} E[(1-J-K)\bar{{a}}+Jf_S |f_B +Kf_B ] \\= & {} (1-J-K)\bar{{a}}+JE(f_S |f_B )+Kf_B \\= & {} (1-J-K)\bar{{a}}+J(\bar{{a}}+t_B (f_B -\bar{{a}}))+Kf_B \\= & {} \bar{{a}}+(f_B -\bar{{a}})t_B =A_B \\ \end{aligned}$$

From the above, we can get \(A_B =E(A|f_B )=(1-J-K)\bar{{a}}+JE(f_S |f_B )+Kf_B \)

Recall A can be written as

$$\begin{aligned} A\equiv E\left[ {a\hbox {|}f_B ,f_S } \right] =\bar{a}+J\left( {f_S -\bar{a}} \right) +K\left( {f_B -\bar{a}} \right) =\left( {1-J-K} \right) \bar{a}+Jf_S +Kf_B \end{aligned}$$

Comparing the above \(A_B \) and A, we can say that \(A<A_B \) is equivalent to \(f_S <E(f_S |f_B )\).

Demand difference between I and B case can be shown as \(d^{B*}-d^{I*}=\frac{bL\left( {A_B -A} \right) }{4Lb-\theta ^{2}}>\)0 if \(A_B >A\)

Part 4(b), Similar to Proposition 4(a) and is omitted.

Proof of Proposition 5

5(a1) and 5(a2), proofs are Straightforward and are omitted.

5(b1)

$$\begin{aligned}&E\left( {\pi _S \hbox {|}f_S } \right) ^{N*}-E\left( {\pi _S \hbox {|}f_B ,f_S } \right) ^{I*}\\&\quad c=\frac{1}{4}\frac{1}{b(4Lb-{\uptheta } ^{2})^{2}}(12L^{2}A^{2}b^{2}\\&\qquad \quad \, -\,8A^{2}Lb{\uptheta } ^{2}+12ALbAS{\uptheta } ^{2}-16AL^{2}b^{2}AS+A^{2}{\uptheta } ^{4} \\&\qquad \quad \, -\,2A{\uptheta } ^{4}AS-AS^{2}{\uptheta } ^{4}-4AS^{2}{\uptheta } ^{2}Lb+4L^{2}AS^{2}b^{2}) \\&\quad ={\uptheta } (12A^{2}b^{2}-16Ab^{2}AS+4AS^{2}b^{2})^{2}L^{2}+{\uptheta } (-4AS^{2}{\uptheta } ^{2}b \\&\qquad \, -\,8A^{2}b{\uptheta } ^{2}+12AbAS{\uptheta } ^{2})^{2}L+{\uptheta } (A^{2}{\uptheta } ^{4}-2A{\uptheta } ^{4}AS+AS^{2}{\uptheta } ^{4})^{2} \\&\qquad >0 \\ \end{aligned}$$

5(b2)

$$\begin{aligned} \pi _B ^{N*}-\pi _B ^{I*}=\frac{1}{2}\frac{LU^{2}VS(UVSVB-UVS^{2}+2U^{2}VB-VS^{2}VB)}{(U+VS)(4Lb-{\uptheta } ^{2})(UVS+VBU+VBVS)^{2}} \end{aligned}$$

We can see that \(\pi _B ^{N*}>\pi _B ^{I*}\) if \(\frac{UV_S V_B -UV_S ^{2}+2U^{2}V_B -V_S ^{2}V_B }{\left( {4Lb-\theta ^{2}} \right) }>0\).

All other proofs are omitted due to straightforward reasoning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X. Outsourcing management under various demand Information Sharing scenarios. Ann Oper Res 257, 449–467 (2017). https://doi.org/10.1007/s10479-015-1944-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1944-z

Keywords

Navigation